PROPOSED SCORING GUIDE FOR UGANDA TEACHERS' EDUCATION CONSULT (UTEC) 2025

UGANDA CERTIFICATE OF EDUCATION

MATHEMATICS

PAPER 1

Item	Scoring criteria	Code	Indicators
1	Total selling price = $250,000 + 200,000 + 150,000 + 125,000$	$m_1 - 1$	Adding.
(i)	= shs 725,000	$m_1 - 1$	
	The cost price = $(4 \times 100,000) = shs \ 400,000$	$m_1 - 1$	Total cost price.
	Profit = selling price - cost price		
	= 725,000 - 400,000 = shs 325,000	$m_1 - 1$	Calculating profit.
	Percentage profit = $\frac{325,000}{400,000} \times 100 = 81.25\%$		Substitution
	The percentage profit increase Mirriam should be expected	m_1-1	Percentage
	from the entire stock on the shelves is 81.25%	AP_1-1	Response to the task
	Total number of tins for promotion = 54	I-1	Identifying the tins
(ii)	Ratio of type A to type $B = 5:4$		for promotion.
	Total ratio $= 5 + 4 = 9$	I-1	For ratio.
	Type A = $\frac{5}{9} \times 54 = 30 \text{ tins}$		Total ratio.
	Type B = $\frac{4}{9} \times 54 = 24 \text{ tins}$	$m_1 - 1$ $m_1 - 1$	No: of type A tins No: of type B tins
	Maximum number of full boxes = $\frac{total\ number\ of\ tins}{Number\ of\ tins\ in\ each\ box}$	m_1-1	No. of type B tills
		$m_1 - 1$	Substitution
	$=\frac{54}{(5+4)}=6 \ boxes$		Maximum number
		1	of full boxes
	The number of tins of type A and type B used for promotion is 30 tins and 24 tins respectively and hence the		
	maximum number of full boxes is 6 boxes.	AP_1-1	Response to the
			task
(iii)	Selling price = $percentage \ decrease \times cost \ price$ = $\frac{100 - 20}{100} \times 65,000$ = $shs 52,000$		Substitution Correct value for selling price
	Each promotion box will be sold at shs 52,000	AP_1-1	Response to the task

					4	_	t h		Г
	X	1	2	3	4	5	$\dots n^{th}$	F 4	Dan Coat t
	<u>y</u>	250	270	290	310	330	•••••	F-1	For first term of the
2	From $U_n = a + (n -) \times d$								sequence.
(i)	First term; $a = 250$							F-1	For the common
	Common difference; $d = 290 - 270 = 20$								difference.
			$U_n = 2$	50 + (n -	-)×20			$m_2 - 1$	Substitution
			= 2!						
	$U_n = 230 + 20n$								Correct expression
	The expression for the n^{th} term of the sequence is $U_n =$								Response to the
	230 + 201				1		- 11		task
(ii)	From U_n		20n·						
()	For the $\sqrt{1000}$							$m_0 = 1$	Substitution
		ber of br		20 ± 20 ×	10 - 430	hricks		_	Correct value for
	50, IIuIII	DCI OI DI	1CK5 - 2.	00 T 20 A	10 – 430	DITUKS		1112 1	bricks
	Thorry	1d a.a.11 /	120 55	a in the	10			AD 1	
	They wo	uia seii 4	FOO DITCK	is in the	10			AP_2-1	_
/L\									task
(b)	Tot NT NA		000000000	a 41a = ····	aa a - £ 11.	Ma1-1-	1		
3			-				, Mutesi		
(a)	and Bag	-				-	ent		
(i)	maize, n	nillet, sor	gnum ar	na sim-si	ım respe	ctively			
								P-1	
	A 4×3 matrix A showing the quantities of cereals sold by								Title of the matrix A
	each vendor								
	N M B								
	A / 20 10 15								
	$B/15 20 5 \setminus 15 20 5 \setminus 15$								
	C\10 1	.5 10/	10 1!	5 10/				$A_3 - 1$	Matrix A
	D \ 5 5	10 /	\ 5 5	$10^{-7}_{4\times}$	3				
(ii)		_		_		_		_	
	$A 1 \times 4 m$		_	the cost	price of o	cereals s	old per	P-1	Title of the matrix B
	kg by ea	ch vendo	or						
			-	A B	С	D			
		Cost	price (12	00 1500	1000	2000)			
		(1200 15	00 1000	$2000)_{1}$	×4		$A_3 - 1$	Matrix B
(b)									
(i)	Market o	cost exclı	ading ma	arket tax	and feed	ling cost	for each		
	vendor								Multiplication of
					/20	10 15	١	$A_3 - 1$	matrices
	- (1200 15	00 1000	2000)	1 5	20 5		_	$mat A \times mat B$
	- (1200 15	1000	4000)1	×4 ^\ \ 10	15 10]		
					\ 5	5 10 /	/ 4×3		Correct
								$A_3 - 1$	
			= (66,500)	67,000	55,500)		3	1

	Total expense on feeding and $tax = 1,500 + 2,000 = shs 3,500$	$A_3 - 1$	Total expenses in
	Matrix for market tax and feeding cost for each vendor		feeding and tax
	= (3,500 3,500 3,500)	$A_3 - 1$	Matrix for expense for each vendor
	Total Market cost including market tax and feeding cost for each vendor		
	= (66,500 67,000 55,500) + (3,500 3,500 3,500)	$A_3 - 1$	Addition of matrices
	= (70,000 70,500 59,000)	$A_3 - 1$	Correct value
	The total Market cost including market tax and feeding cost for Nabiryo, Mutesi and Baguma is shs. 70,000, shs. 70,500 and shs. 59,000 respectively	<i>IN</i> – 1	Response to the task
(ii)	For Nabiryo's expected sales revenue = items sold × selling price		
, ,	Selling price = cost price + mark-up $= \begin{pmatrix} 1200 \\ 1500 \\ 1000 \\ 2000 \end{pmatrix} + \begin{pmatrix} 300 \\ 300 \\ 300 \\ 300 \end{pmatrix} = \begin{pmatrix} 1500 \\ 1800 \\ 1300 \\ 2300 \end{pmatrix}$	$A_3 - 1$	Selling price for Nabiryo
	Expected sales = $(20 \ 15 \ 10 \ 5) \times \begin{pmatrix} 1500 \\ 1800 \\ 1300 \\ 2300 \end{pmatrix}$	$A_3 - 1$	Multiplication
	$= (20 \times 1500) + (15 \times 1800) + (10 \times 1300) + (5 \times 2300)$ $= shs 81,5000$ For Mutesi's expected sales revenue	$A_3 - 1$	Correct answer for expected sales
	Selling price =	$A_3 - 1$	Selling price for Mutesi
	Expected sales = $(10 \ 20 \ 15 \ 5) \times \begin{pmatrix} 1600 \\ 1900 \\ 1400 \\ 2400 \end{pmatrix}$	$A_3 - 1$	Multiplication
	$= (10 \times 1600) + (20 \times 1900) + (15 \times 1400) + (5 \times 2400)$ $= shs 87,000$	$A_3 - 1$	Correct answer for expected sales
	For Baguma's expected sales revenue $ Selling price = \begin{pmatrix} 1200 \\ 1500 \\ 1000 \\ 2000 \end{pmatrix} + \begin{pmatrix} 200 \\ 200 \\ 200 \\ 200 \end{pmatrix} = \begin{pmatrix} 1400 \\ 1700 \\ 1200 \\ 2200 \end{pmatrix} $	$A_3 - 1$	Selling price for Baguma

	Expected sales = $(15 \ 5 \ 10 \ 10) \times \begin{pmatrix} 1400 \\ 1700 \\ 1200 \\ 2200 \end{pmatrix}$	$A_3 - 1$	Multiplication
	$= (15 \times 1400) + (5 \times 1700) + (10 \times 1200) + (10 \times 2200)$ $= shs 63,500$ The expected sales revenue for each vendor are shs 81,500, shs. 87,000 and shs. 63,500 for Nabiryo, Mutesi and Baguma respectively.	$A_3 - 1$ $IN - 1$	Correct answer for expected sales Response to the task
	Net profit = expected sales revenue — cost price		
	For Nabiryo's net profit = $81,500 - 70,000 = shs. 11,500$	$A_3 - 1$	Nabiryo's net profit
	For Mutesi's net profit = $87,000 - 70,500 = shs. 16,500$	$A_3 - 1$	Mutesi's net profit
	For Baguma's net profit = $63,500 - 59,000 = shs 4,500$	$A_3 - 1$	Baguma's net profit
	The net profit for Nabiryo, Mutesi and Baguma is shs. 11,500, shs. 16,500 and shs 4,500 respectively	<i>IN</i> – 1	Response to the task
(c)	 ✓ Vendors should review their pricing strategy (like Mutesi's mark-up shs. 400) in order to generates the highest profit, suggesting customers are willing to pay for quality or services ✓ Maintain simple records of purchase from suppliers as proof of source if questioned during an inspection. ✓ All vendors must budget for and pay the daily market tax (shs. 1500) without fail. 	<i>IN</i> – 1	Response to the task
4 (a)	Information given $n(\varepsilon) = 116, n(A \cap C) = 20, n(A \cap B) = 18, n(B \cap C)_{only} = 9,$ $n(B) = 42, n(C)_{only} = 20, n(A \cap C)_{only} = n(A \cup B \cup C)^{1}$ Let $n(B)_{only} = x$; then $n(A)_{only} = 2x$ Let $n(A \cap B \cap C) = y$	P - 1	For analyzing the information given in the scenario

A Venn diagram showing number of students voting for their class captain.

$$n(B) = 42; 18 - y + y + 9 + x = 42$$

$$x = 15$$

From

$$n(\varepsilon) = 116;$$

$$116 = 30 + 18 - y + y + 20 - y + 20 - y + 9 + 20 + 15$$
$$116 = 132 - 2y$$
$$y = \frac{-16}{-2}$$

$$n(\varepsilon) = 116$$

- P-1 Title of the Venn diagram
- P 1 For inserting any three given values in the Venn diagram
- $A_3 1$ For 2X and X
- $A_3 1$ For 20 y
- $A_3 1$ Generating the equation
- $A_3 1$ | Correct value of x
- $A_3 1$ Generating the equation
- $A_3 1$ | Correct value of y

 $A_3 - 1$ Complete Venn diagram

	n(A) = 30 + 10 + 8 + 12	$A_3 - 1$	Addition
	= 60	$A_3 - 1$	Correct value for
			n(A)
	n(C) = 12 + 8 + 9 + 20	$A_3 - 1$	Addition
	= 49		Correct value for
		3	n(C)
	The number of students who ticked for A and C	IN-1	Response to the
	respectively is 60 and 49 students	1111	task
(b)	respectively to oo and 15 statement		taon
(6)	Andrew is a candidate preferred by the majority. This is	IN-1	Response to the
		IIV — 1	_
	because he got 60 ticks which is more than compared to		task
	what Badul (42) and Cathy (49) respectively.		
(c)			
	Percentage of the votes obtained by Andrew	$A_3 - 1$	Substitution
	$= \frac{60}{116} \times 100 = 51.72\%$		
		$A_3 - 1$	Correct value for
	Percentage of the votes obtained by Badul and Cathy		Andrew's
	= 100 - 51.72		percentage.
	= 48.28%	$A_3 - 1$	Correct value for
			Badul's and Cathy's
	Andrew got 51.72% which is just above 50% of the votes		percentages.
	and almost half of the class did not tick him and therefore	IN-1	Response to the
	he may not lead easily since almost half of the votes	IN-1	task.
	(48.28%) of the class may not be fully supportive.		task.
5	100.2070) of the class may not be fully supportive.		
	Sketch		
(a)	SKetcii		
	A	$A_4 - 1$	Sketch
	60° 120'		
	60en		
	Using the scale of; 10cm: 1cm		
	Then 60cm = 6cm	1 1	Scale and
		$A_4 - 1$	
			conversion
1		1	1

	Total income tax for one worker = $5000 + 11,500$ = $shs. 16,500$ Therefore, total income tax for two workers = $2 \times 16,500$ shs. 33,000 The total income tax Mukasa is to remit to the authorities is $shs. 33,000$	$m_4 - 1$	Addition Correct for income tax Multiplication Correct for income tax for two workers Response to the task
(c)	Net income for one worker = $Gross\ income - each\ income\ tax$ = $350,000 - 16,500$ = $shs. 333,500$ The net income Mukasa will pay to each employee after tax is $shs. 333,500$	$A_4 - 1$ $m_4 - 1$ $AP_4 - 1$	Substitution Correct for net income Response to the task
6 (a)	Information given; $n = 3$ years, prinicipal, $p = shs$ 200,000,000 $rate, r = 9 \%$ From Amount; $A = P\left(1 + \frac{r}{100}\right)^n$ $A = 200,000,000 \left(1 + \frac{9}{100}\right)^3$ $A = shs. 259,005,800$ Interest earned = Amount - Prinicipal = 200,000,000 - 259,005,800 = $shs. 59,005,800$ The total amount at the end of 3 years is $shs. 259,005,800$ and interest earned is $shs. 59,005,800$	$m_4 - 1$ $A_4 - 1$ $m_4 - 1$	Substitution Correct for amount made Substitution Correct for interest earned Response to the task
(b)	Information given on mortgage; Principal, (p) = shs. 400,000,000 Rate (r) 6 % per annum Time (n) = 5 years in equal annum installments From Amount for annum installment, $A = P\left(\frac{r(1+r)^n}{(1+r)^n-1}\right)$ $= 400,000,000 \times \left(\frac{\frac{6}{100}\left(1+\frac{6}{100}\right)^5}{\left(1+\frac{6}{100}\right)^5-1}\right)$	$A_4 - 1$	Substitution

	$= 400,000,000 \times \left(\frac{0.06(1+0.06)^5}{(1+0.06)^5-1}\right)$ $= shs. 94,958,560$ So, her annum mortgage installment = shs. 94,958,560	m_4-1	Correct for annum mortgage installment
	And total amount payable= annum installment \times number of years $= 94,958,560 \times 5$ $= shs. 474,792,800$ Total amount payable at the end of 5 years is $shs. 474,792,800$ and her annum mortgage installment is $shs. 94,958,560$	$m_4 - 1$	Multiplication For total payable amount Response to the task
(c) (i)	Delivery van; cost $price = shs. 60,000,000$, $appreciation rate = 4\%$ and $time, n = 3$ years		
	From Appreciation; $A = P \left(1 + \frac{r}{100}\right)^n$		
	$A = 60,000,000 \left(1 + \frac{4}{100}\right)^{3}$ shs. 67,491,840	$\begin{vmatrix} A_4 - 1 \\ m_4 - 1 \end{vmatrix}$	Substitution Appreciated value
	Increase in value = $shs. (67,491,840 - 60,000,000)$ = $shs. 7,491,840$		Substitution Increase in value
	The value of the delivery van has appreciated to shs. 67,491,840 which by an increase of shs. 7,491,840	AP_4-1	Response to the task
(ii)	Machinery; depreciation rate = 15 %; cost price = 120 million and time, $n = 4$ years $depreciation; A = P\left(1 - \frac{r}{100}\right)^n$		
	$= 120,000,000 \times \left(1 - \frac{15}{100}\right)^4$ $= shs. 62,640,750$	$\begin{vmatrix} A_4 - 1 \\ m_4 - 1 \end{vmatrix}$	
	Loss in value after 4 years = 120,000,000 - 62,640,750 shs. 57,359,250	$\begin{vmatrix} A_4 - 1 \\ m_4 - 1 \end{vmatrix}$	Substitution loss in value
	The value of machinery depreciated to <i>shs.</i> 62,640,750 after 4 years with the total loss in value of <i>shs.</i> 57,359,250	AP_4-1	Response to the task

(iii)	From; Annum premium = $value \ of \ a \ good \times rate \ of \ premium$ $= \frac{2.5}{100} \times 900,000,000$ $shs. 22,500,000$	$A_4 - 1$ $m_4 - 1$	Substitution Annum premium value
	Total premium for 5 years = $22,500,000 \times 5$ = $shs. 112, 500,000$	$\begin{vmatrix} A_4 - 1 \\ m_4 - 1 \end{vmatrix}$	Multiplication Total premium for 5 years
	The annum premium is <i>shs</i> . 22,500,000 and she also pays <i>shs</i> . 112,500,000 as a total premium over 5 years	AP_4-1	ž
(d)	 ✓ It enables individual and business to acquire high-value assets like real estates, land etc ✓ Facilitate investment in property and business infrastructure and construction. ✓ Mortgage systems help mobilize capital within the financial sector, allowing banks to lend savings for productive investments, which strengthens the entire local economy. 	AP_4-1	Response to the task