SENIOR FIVE TERM 1 (PP1) MATHEMATICS SCENARIOS, 2025 FROM ALLIANCE JOINT EXAMINATIONS BOARD (AJEB)

ΤΟΡΙΟ	SCENARIO AND TASK	PROPOSED RESPONSE / ANSWER
1. Numerical Concepts	Scenario	Response:
	A pharmacist is preparing a chemical solution where the concentration must be recorded on a log scale. Given that the molarity of the solution is 3.2×10^{-5} mol/L, they must calculate the pH-related value. Task : Calculate log ₁₀ (3.2×10^{-5}) correct to 3 significant figures.	Step 1: Use compound interest formula: $A = P(1 + \frac{r}{n})^{nt}$, where $P = 500,000, r = 0.08, n = 4, t = 3$. Step 2: Simplify exponents: $A = 500,000(1.02)^{12}$. Step 3: Apply logarithms: $\log A = \log 500,000 + 12 \log 1.02$. Solve for A . Surd Check: Express $(1.02)^{1/4}$ as a surd for manual approximation. Final amount \approx UGX 634,121.
2. Equations and	Scenario	Response:
Inequalities	A company's budgeting formula requires that the sum of production costs for items A and B meet two constraints. The costs satisfy: $5A + 3B$ = 48 and $2A + 4B = 46$ (in million UGX). Task : Solve the simultaneous equations to find A and B	Step 1: Let length parallel to river = x , other sides = y . Area: xy = 150. Cost: $C = 10,000(x + 2y)$. Step 2: Substitute $y = \frac{150}{x}$: $C = 10,000(x + \frac{300}{x})$. Step 3: Minimize C : Find derivative C' and solve $x^2 = 300$ $\rightarrow x = 10\sqrt{3}$ m. Inequality: $10,000(x + \frac{300}{x}) \le 1,500,000 \rightarrow x \ge 10$ m. Valid range: $10 \le x \le 15$ m.

3. Coordinate Geometry	Scenario Two GPS devices report coordinates of survey points as A(2,3) and B(10,15). A civil engineer needs to design a straight road connecting them. Task: Find the gradient and length of line AB.	Response: Step 1: Slope $m = \frac{17-5}{8-2} = 2$. Equation: $y - 5 = 2(x - 2)$ $\rightarrow y = 2x + 1$. Step 2: Perpendicular distance from (4, 10): Use formula (d =
4. Partial Fractions	Scenario: An engineer analyzes stress distribution in a bridge beam, modeled by $\frac{3x^2+5x-2}{(x-1)(x+2)^2}$. Task: Decompose the expression into partial fractions to simplify integration for stress calculations.	Response: Step 1: Set up $\frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$. Step 2: Multiply through by denominator: $3x^2 + 5x - 2 = A(x+2)^2 + B(x-1)(x+2) + C(x-1)$. Step 3: Solve for constants: $A = 1, B = 2, C = -3$. Final form: $\frac{1}{x-1} + \frac{2}{x+2} - \frac{3}{(x+2)^2}$.
5. Trigonometry (Compound Angles, Triangle Solutions)	 Scenario: A pilot flies 300km on a bearing of 060°, then 200km on 150°. Task: Use trigonometric identities and the sine/cosine rules to find the displacement from the starting point and the bearing for return. 	Response: Step 1: Convert bearings to angles: First leg = 60° (N60°E), second leg = 150° (S30°E). Step 2: Resolve into components: $\Delta x = 300 \sin 60^{\circ} + 200 \sin 150^{\circ} \approx 259.8 + 100 = 359.8 \text{km}$. $\Delta y = 300 \cos 60^{\circ} + 200 \cos 150^{\circ} \approx 150 - 173.2 = -23.2 \text{ km}$. Step 3: Resultant displacement: $\sqrt{359.8^2 + (-23.2)^2} \approx 360.5 \text{ km}$. Bearing: $\tan^{-1}(\frac{359.8}{23.2}) \approx 86.3^{\circ}$ (N86.3°E).