Name	signature

P525/2 CHEMISTRY PAPER 2 2 ¹/₂ HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

PRE REGISTRATION EXAMINATIONS 2025

SENIOR SIX CHEMISTRY

PAPER 2

2 HOURS 30 MINUTES

INSTRUCTIONS TO CANDIDATES:

- Attempt five questions including <u>three questions</u> from section A and <u>two questions</u> from section B.
- Each question must be answered on separate answer sheets.
- Where required use the following data;
 - Molar gas constant $R = 8.314 \text{J} \text{ mol}^{-1} \text{K}^{-1}$

C = 12 O = 16 H = 1 Pb = 207

Apex Examination Council 0781170799

SECTION A Answer any three questions from this section

	1. eleme		ne mass spectromete consisting of vario			etermin	e the r	elative a	tomic m	ass of		
a)			neant by the follow	-			(@01 ı	nark)				
0			ve intensities.	0			、					
Ă(ii)	Relati	ve	abundance.									
S(iii))Relati	ve	atomic mass.									
ded from www.mutoonline.com, you can downloa	Briefly isotop (06 m	y d es ark	escribe how the rela can be determined u s)	using a mass	s specti	ometer	:.[Diag	ram not	required]		
<pre>§c)</pre>			ive atomic mass of						g & ²⁰ 12N	<i>lg</i> 1s		
N. M	24.3.I	f th	e percentage abund	ance of $^{25}_{12}$	Mg & ²	$^{26}_{12}Mg$	are eq	ual.				
<mark>등</mark> (i)			e the percentage abu	indance of e	each isc	otope of	f magn	esium.				
onl	(011/2		,			Y						
<mark>n</mark> e (ii)			e mass spectrum of				narks)					
<mark>g</mark> d)			below shows the r			e deca	y of a 1	adioacti	ve isotop	be of		
n, y	•		$\lim_{12}^{26} Mg$. Use the data				(0.1					
2	graph	0I	log(mass) against ti Mass of ²⁶ / ₁₂ Mg(g)		18.7	14.6	(04 n	narks) 8.8	6.9	5.4		
can			Time (s)		300	600	900	0.0 1,200	1,500	1,800		
ġ,							900	1,200	1,500	1,800		
	-		e graph plotted in (c		ermine		01	1_)	-			
			radioactive decay of stant and hence half	-	_		(01 ma					
_				$11110 \text{ of } 12^{10} 12^{10}$	мg.	(014	2 mark	-				
			mass of ${}^{26}{}_{12}Mg$.			C I	(01 m					
past	2	(a)) Write the formula	e of the chl	orides	of grou	p (IV)	element		1/2 mortes)		
par	(b)	C+	ate the condition (s)	and write	anotio	n fan th	- *	tion to al		¹∕₂ marks)		
stpapers	prepar				equation	n ioi u	le react		low the			
	propus		(i) Chloride of car	bon.				$(02^{1/2})$	marks)			
			(ii) Chloride of sil			$(02\frac{1}{2} \text{ marks})$						
			(iii) Chlorides	(05 marks)								
	c)	De	escribe the reactions	of chloride	es of gro	oup ele	ments	with wat	ter.			
									(06	¹∕₂ marks)		
	3. (a)	W	hat is meant by th	e term idea	l solut	ion?			(()3 marks)		
	Ap	<i>ex</i>	Examination Cour	ncil 078117	0799			2	Turn	over		

b) Ethanol and butanol are liquids that form an ideal solution. The data below shows the mole fraction butanol in the liquid and vapour phases varying with temperature for ethanol – butanol system

	ethanol – butanol syste	;111										
	Boiling point (°C)		117	110	100	90	85	78.5				
	e fraction of butanol (%)	lliquid 100		90	66	40	22	0				
		vapour	100	70	40	18	10	0				
				1								
	(i) On the same axes pl both liquid and vapour (05 marks)	phases ar	nd label y		h comple	tely.	of butar	nol in				
	 (ii) Explain the shape of the graph. (04 marks) (iii) Describe how a liquid mixture containing 45% ethanol is fractionally distilled. (04 marks) 											
)	State Raoult's law as applied to miscible. (01 mark)											
)	Explain why some liquid mixtures don not obey Raoult's law. (03 marks)											
	(a).A gaseous alkene,	Y diffuse	s 0.5773 :	5 times fa	aster than	nitrogen	gas.					
	Determine the molecu l				100		03 mark					
j	. On ozonolysis f	· · · · · · · · · · · · · · · · · · ·					_	and				
	propanone as the majo											
	Write the equation and Alkene, Y and benzene					marks)	11.					
	ii) Alkene, Y and b	_			. (01	-	4 marks)	iii)				
	Propanal and p			acidic m	edium.	(04 m)				
:.	Using equations only s	how how	alkene,	Y can be	synthesiz	ed from						
yne	ð.			(04	marks)							
			SECTIO									
		er any two	-	ons from	this section	ion						
	Explain the following											
a)'	The shapes of the mole	cules BF	and PC	1 ₃ are diff	erent. (05	marks)						
	• The melting point of so											

Downloaded from www.mutoonline.com, you can download more pastpapers

(04 marks)

c) An aqueous solution of sodium sulphate is neutral to litmus while aqueous solution of sodium sulphite turns red litmus paper blue.

(04 marks)

(02 marks)

4 | Turn over

d)When excess carbon dioxide gas was separately bubbled through sodium aluminate and sodium carbonate solution both forms white precipitate. (04 marks)

e) When warm concentrated nitric acid was added to sulphur, the yellow solid dissolved with effervescence of reddish brown gas and colourless solution was formed.
 (03 marks)

6. (a) (i) Define the term colligative property.(01 mark) (ii)State the colligative properties of a solution. (02 marks)

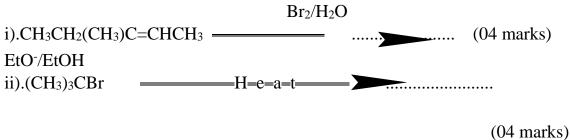
(i) Describe how molecular mass of cane sugar can be determineusing one of thecolligative properties.(06 marks)

(ii)State limitations of the method used.

The table below shows the freezing points of various solutions of cane sugar in solvent \mathbf{X} .

Mass of cane sugar (g /1000g of solvent X)	26	42	66	78	118	148	173
Freezing point. (°C)	5.11	4.87	4.51	4.33	3.73	3.28	2.91

(i) Plot a graph of freezing against mass of cane sugar and use graph to determine the: (03 marks)


(ii) Freezing point of solvent **X.** (01 mark)

(iii)Freezing point constant for solvent **X**. (02 marks)

[RMM of cane sugar = 342]

State and explain how the freezing points of the solution would be affected if cane sugar associates in solution **X**. (03 marks)

7(a) Complete the following equations and in each case outline a mechanism for the reaction.

Apex Examination Council 0781170799

- b. Write equations to show how the following compounds can be synthesised.
 - i). Propan-1-olfromPropyne(03 marks)ii). 2,2-dibromopropanefromPropan-1-ol(04 marks)

(c).Describe the reaction of: Ethanol with sulphuric acid. (05 marks)

8 (a) Describe how pure Aluminium can be extracted from bauxite. [Your answer should include relevant equations for the reactions that take place during extraction process. (12 marks)

- b).Using equations only, show how Aluminium can be converted in to Aluminium hydroxide.
- c) Potash alum, K₂SO₄.Al₂(SO₄)₃.24H₂O was dissolved in water and potassium hydrogen carbonate solution added to the resultant solution.
- d) i) State and explain what was observed. (03 marks) Write equation for the reaction that took place. (02 marks)

THE PERIODIC TABLE

- 1	2	1										3	4	5	6	7	8
1.0 H 1														1	1	1.0 H 1	4.0 Ho 2
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 0 8	19.0 F 9	20.2 No 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21		50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26			63.5 Cu 29	65.7 Zn 30	69.7 Ga 31		74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37		88.9 ¥ 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89									1					1	1
		-18 18	139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62		157 Gd 64					169 Tm 69	173 ¥b 70	175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97		Es	Fm	256 Md 101	No	

Downloaded from wwwgmutoonline.com, you can download more pastpapers

(03 marks)