SOLUTIONS FOR THE

A' LEVEL PHYSICS SEMINAR

HELD AT UGANDA MARTYRS S.S NAMUGONGO

ON 5TH OCTOBER 2024

	Qn.	Approach	Remarks
1.	a i)	During an <i>elastic collision</i> , kinetic energy is conserved but	
		during an <i>inelastic collision</i> , kinetic energy is not conserved	
	ii)	<i>Momentum</i> is the product of mass of a body and its velocity	
		<i>Impulse</i> is the change is the momentum of a body.	
	iii)	$F \propto \frac{mv - mu}{t}$, $F = \frac{mv - mu}{t}$, hence $mv - mu = Ft$	
	b i)	If no external force acts on a system of colliding bodies, their	
		total momentum before collision is equal to their total	
		momentum after collision.	
	ii)	If two bodies of masses m_1 and m_2 moving with respective	
		velocities u_1 and u_2 collide for a time t and move with velocities	
		v_1 and v_2 after collision, then from Newton's 3^{rd} law, $body1$	
		exerts a force F_{12} on body2 and body2 reacts with force F_{21}	
		From Newton's 2 nd law	
		$F_{12} = k \frac{(m_2 v_2 - m_2 u_2)}{t}$ and $F_{21} = k \frac{(m_1 v_1 - m_1 u_1)}{t}$	
		From 3^{rd} law, $F_{12} = -F_{21}$	
		$(m_2v_2 - m_2u_2)$ $(m_1v_1 - m_1u_1)$	
		$k \frac{t}{t} = -k \frac{t}{t}$	
		$m_2v_2 - m_2u_2 = -m_1v_1 + m_1u_1$	
		$m_2v_2 + m_1v_1 = m_1u_1 + m_2u_2$	
	c i)	$mgh = \frac{1}{2}mv^2$, $v = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 3} = 7.67ms^{-1}$	
	ii)	$u = \sqrt{2 \times 9.81 \times 5} = 9.90 \ ms^{-1}$	
		$F = \frac{mv - mu}{mv - mu} = \frac{0.5(7.67 + 9.90)}{mv - 9.90} = 878.5N$	
	4	$\frac{t}{C_{\text{out}}} = \frac{0.01}{100000000000000000000000000000000$	
	а.	conservative forces are ones for which the work done to move	
		forces are ones for which the work done to move a body	
		through a closed loop is not zero	
		e a Conservative – Gravitational force magnetic force electric	
		force non-conservative – Friction Viscous force	
2	a	Surface tension is the force acting normally per unit length on	
2.	сл.	one side of a line drawn in the liquid surface.	
	<i>b.i</i>)	Radius of the small drop = $0.5 \times 10^{-3}m$	
		Volume of the big drop	
		4 2 2 4 2	
		$= 1000 \times \frac{1}{3} \times 3.14 \times (0.5 \times 10^{-3})^3 = \frac{1}{3} \times 3.14 \times R^3$	
		Radius of big drop = $[1000 \times (0.5 \times 10^{-3})^3]^{-3} = 5 \times 10^{-3} m$	
		Surface area of big drop	

PHYSICS PAPER ONE

ii)	In liquids, viscosity depends on intermolecular forces of	
	attraction. As temperature increases, the intermolecular forces	
	reduce, hence viscosity reduces.	
iii)	$A_1V_1 = A_2V_2$	
	$10 \times 0.2 = 2.5V_2$	
	$V_2 = 0.8ms^{-1}$	
	$P_{1} = P_{2} = \frac{1}{2} o(0.8^{2} - 0.2^{2})$	
	$r_A r_B = 2^{p(0.0 - 0.2)}$	
	$= \frac{1}{2} \times 1000 \times (0.8^2 - 0.2^2) = 300Pa$	
<i>c i)</i>	<i>Lamina flow</i> is the flow of a fluid in which layers of fluid that	
	are equidistant from the axis of flow more with the same	
	velocity parallel to the axis of flow.	
	<i>Turbulent Flow</i> is the flow of a fluid in which layers of the	
	fluid that are equidistant from the axis of flow move with	
	different velocities.	
ii)	The Filter pump	
	The filter pump has a narrow section in the middle so that water	
	from the tap flows faster here.	
	Inis causes a drop in pressure near it and air therefore flows in from the side tube to which the vessel is connected. The sir and	
	water together are expelled through the better of the pump	
$(1 \alpha i)$	<i>Limiting friction</i> is the maximum friction that exist between	
4. <i>u l)</i>	two surfaces in contact just before relative motion starts	
	two surfaces in contact just before relative motion starts	
ii)	▲	
	Б / — — — — — — — — — — — — — — — — — —	
	ш /	
	\rightarrow	
	Applied force	
<i>b i)</i>	$F = mg\sin\theta + mg\cos\theta$	
	$= 2000 \times 9.81(\sin 20 + 0.2\cos 20) = \underline{10397.8N}$	
	$P = FV = 10397.8 \times 15 = 1.56 \times 10^5 W$	
С	• The resultant force on the body is zero.	
	• The sum of the clockwise moments about any point is equal	
	to the sum of the anticlockwise moment about the same	
	point	
7 - \		
d i)		

	R_2 $3\theta^{\theta}$ $3m$ R_1 R_1 R_1 R_2 R_2 R_1 R_2 R	
	$x \qquad \mu R_1$	
ii)	$h = 3 \cos 30 = 2.6m$ $x = 3 \cos 60 = 1.5m$ $R_1 = mg = 5 \times 9.81$ Taking moment about P: $F \times 2.6 + 5 \times 9.8 \times 1 = R_1 \times 1.5$ $2.6F = 5 \times 0.81(15 - 1)$	
	$2.6F = 5 \times 9.81(1.5 - 1)$ F = 9.3N	
	Reaction at the ground $R = (9.43^2 + (5 \times 9.81)^2)^{\frac{1}{2}} = 49.95N$	
<i>e i)</i>	A couple is a pair of equal parallel forces acting points on a	
)	body in opposite directions	
11)	$W = F \times D$ $D = 10 \times 2\pi = 37.68m$	
	$W = 4 \times 37.68 = 150.72I$	
5. a i)	<i>Moment of inertia</i> is the sum of the product of the masses of	
	the particles of a rotating body and the square of their respective	
(b_i)	distances from the axis of rotation. $\sum mr^2$	
	$ \begin{array}{c} 1 = (0.01 \times 0.23) + (0.01 \times 0.23) + (0.01 \times 0.3) \\ + (0 \cdot 01 \times 0.5^2) \end{array} $	
	$= 6.25 \times 10^{-3} kgm^2$	
ii)	$8rev/s = 8 \times 2\pi rads^{-1}$	
	$\Rightarrow kE = \frac{1}{2}I\omega^2 = \frac{1}{2} \times 6 \cdot 25 \times 10^{-3} \times (8 \times 2\pi)^2 = 7.89J$	
<i>c i)</i>		
	R_1 and R_2 are Normal Reactions	
	F_1 and F_2 are Frictional Forces	

	Mg is the Weight of the Car	
ii)	$F_1 + F_2 = \frac{mV^2}{mV^2} \dots \dots \dots (i)$	
	$\begin{bmatrix} 1 & 2 & r \\ P + P & -ma & (ii) \end{bmatrix}$	
	$mV^{2}h$	
	$F_1h + F_2h + R_1a = R_2a \Rightarrow R_2 - R_1 = \frac{mv}{ra} \cdots (iii)$	
	$(ii) - (iii), mg - \frac{mV^2h}{a} = 2R_1 = m\left(g - \frac{V^2h}{ra}\right)$	
	For safety of the car $\frac{V^2h}{dr} < q \Rightarrow V_{rev} = \sqrt{\frac{gra}{gra}}$	
	$ra = g \forall \max \sqrt{h}$	
	Where \boldsymbol{a} , is the distance half way between the tyres and \boldsymbol{h} , is	
1	the height of the centre of gravity above the ground.	
<i>a</i> .	Racing cars can move faster on banked circular tracks than on	
	level tracks because there is a larger value of Centripetal force	
	since it is provided by both the component of inction and the	
6 ai	\checkmark Planets describe ellipses about the sup as one focus	
0. u i	\checkmark The line joining a planet to the sun sweeps out equal areas in	
	equal time intervals	
	\checkmark The square of the period of revolution of the planet round the	
	sun, is proportional to the cube of their mean distance of	
	separation.	
ii)	For any two bodies in the universe, there is a force of attraction	
	between them which is proportional to the product of their	
	masses and inversely proportional to the square of their distance	
	of separation.	
<i>b i)</i>		
	Surface of the earth	
	g Inside the Above the surface of	
	earth the earth	
ii)	CMm CM	
(1)	$\left \frac{dm}{r^2} = mg \Rightarrow g = \frac{dm}{r^2}\right $	
	Effective mass of the Earth $=\frac{4}{3}\pi(R_e-r)^3\rho$	
	$\frac{1}{4} (R_{\rho} - r)^{3}\rho$	
	$\Rightarrow g = G \times \frac{\pi}{3} \pi \frac{c}{(R_c - r)^2}$	
	4	
	$g = \frac{1}{3} G \pi (R_e - r) \rho$	

	<i>c i)</i>	If orbital radius of the Earth is R_e , then orbital radius of Mars
		$R_m = 1.53R_e$
		GMm 2π $4\pi^2$
		$\overline{R_e^2} = m\omega^2 R_e$, but $\omega = \overline{T_e} \Rightarrow GM = \overline{T_e^2} R_e^2$
		π_{θ}
		Also, $GM = \frac{1}{T_m^2} R_m \implies \frac{1}{T_e^2} R_e^2 = \frac{1}{T_m^2} (1.53R_e)^2$
		$\Rightarrow T_m = \sqrt{(1.53^3 T_e^2)} = \sqrt{1.53^3 \times 365^2} = \underline{690.8 days}$
	d i)	<i>Parking orbit</i> is the path of a satellite about the Earth, whose
		period of revolution is the same as the period of rotation of the
		Earth about its axis i.e. 24<i>hours</i>
	ii)	Artificial satellites are used for; Navigation, Global
		communication, Weather forecast, Study of the universe,
		Scientific research
	e i)	$M.E = \frac{GMM}{2R}$, but $R = 6 \cdot 4 \times 10^6 + 3 \cdot 59 \times 10^7$
		$= 4 \cdot 23 \times 10^7 m$
		$\Rightarrow M_{\cdot}E = \frac{6.67 \times 10^{7} \times 5.97 \times 10^{24} \times 100}{4 \times 10^{24} \times 100} = 4 \cdot 71 \times 10^{8}I$
	ii)	$\frac{2 \times 4 \cdot 23 \times 10^7}{\text{Satallite will move to an orbit of smaller radius and its velocity}}$
	11)	or kinetic energy increases
7	a	Specific heat canacity is the amount of heat required to raise
/.	и	the temperature of a lkg mass of a substance by lK
		Unit: $JKg^{-1}K^{-1}$
	b	
		Constant
		l honord head water tank
		Waste Pipe
		Switch K
		Thermometer, T_2
		E E Liquid in / Liquid out
		Thermometer, T_1
		Thermometer, T_1 Liquid in Liquid collected in container
		Thermometer, T_1 Evacuated Heating
		Thermometer, T_1 Evacuated glass tube coil
		Thermometer, T_1 Evacuated glass tube coil Evacuated to the state of the state
		Thermometer, T_1 Thermometer, T_1 Evacuated Heating coil The liquid is allowed to flow through the apparatus at a
		 Thermometer, T₁ Evacuated glass tube coil The liquid is allowed to flow through the apparatus at a constant rate.
		 Thermometer, T₁ Thermometer, T₁ Evacuated glass tube coil The liquid is allowed to flow through the apparatus at a constant rate. The switch is closed and the current I and voltage V are
		 Thermometer, T₁ Evacuated glass tube coil The liquid is allowed to flow through the apparatus at a constant rate. The switch is closed and the current I and voltage V are recorded.

		• The steady state temperatures θ_1 and θ_2 are recorded from	
		the thermometers T_1 and T_2 respectively.	
		• The mass M, of the liquid collected in time t is recorded.	
		• The rheostat is adjusted for new values of current I' and	
		voltage V'	
		• The rate of flow is adjusted so as to have the same steady	
		• The face of now is adjusted so as to have the same steady temperatures θ and θ . The new mass M' collected in the	
		temperatures θ_1 and θ_2 . The new mass <i>M</i> confected in the	
		same time t is recorded.	
		• The specific heat capacity of the liquid;	
		$C = \frac{(V'I' - VI)t}{(V'I' - VI)t}$	
		$(M'-M)(\theta_2-\theta_1)$	
	a i)	W = ma(0, 0) + h	
	<i>c i</i>)	$IV = IIIC(\theta_2 - \theta_1) + II$	
		$\Rightarrow 35 \times 2 = 4.0 / \times 10^{-2} c(29 - 25) + h$	
		$h = 70 - 68.47 = 1.53 \text{Js}^{-1}$	
	ii)	From $C = \frac{(V'I' - VI)t}{(V'I' - VI)t}$	
		$(M'-M)(\theta_2 - \theta_1)$	
		$C = \frac{(33 \times 2^{-2} \times 2^{-1})^{10}}{(107 \times 10^{-2})(29 - 25)} = 4.206 \times 10^{3} J K g^{-1} K^{-1}$	
	iii)	0.0351 y + 4263 = 79.968 + 3360	
	,	79065 - 2.250 - 106 W - 1	
		$Lv = \frac{1}{0.035} = 2.259 \text{ x } 10^{\circ} \text{ JKg}^{\circ}$	
8.	a i)	• <i>Isobaric</i> - compression or expansion at constant pressure	
		• <i>Isovolumetric</i> – change in pressure and temperature at	
		constant volume	
	ii)	Isobaric: $\frac{V}{P}$ = Constant Isovolumetric: $\frac{P}{P}$ = Constant	
	/	$\frac{1500 \text{ and }}{T} = \frac{15000 \text{ and }}{15000 \text{ and }} = \frac{1}{T} = \frac{1}{T} = \frac{1}{T}$	
	b. i)	\wedge	
		Pressure	
		V 2V Volume	
	ii)	$T_{\rm c} = 25^{0}C = 298K V_{\rm c} = V - P_{\rm c} - 1.01 \times 10^{5} P_{\rm c}$	
	~~)	$T_1 = 20.0 = 2000, v_1 = v, T_1 = 1.01 \times 10^{7} m$	
		$T_2 = 300K, V_2 = 2V, T_2 = 1.01 \times 10 T u$ $T = 200K, V = 2V, D = 2.20 \times 104Da$	
		$T_3 = 200R, v_3 = 2v, r_3 = 3.39 \times 10 \ Fu$ $T_3 = 2620V \ V_3 = V \ D_3 = 22$	
		$I_4 - 203.9 \Lambda, V_4 = V, F_4 = ::$	
		$\frac{1}{298} = \frac{21}{T_0} \Rightarrow T_2 = 2 \times 298 = 596K$	
		<i>2 1 1 1 1 1 1 1 1 1 1</i>	

	$\frac{P_2}{T} = \frac{P_3}{T}$, $T_4 V_4^{\gamma - 1} = T_3 V_2^{\gamma - 1}$ and $P_4 V_4^{\gamma} = P_3 V_2^{\gamma}$	
	T_2 T_3 T_4 S_3 T_4 S_3	
	$\frac{1.01 \times 10^{3}}{1.00} = \frac{P_{3}}{2.00} \Rightarrow P_{3} = 3.39 \times 10^{4} Pa$	
	$596 200^{-3}$	
	$T_4 = \frac{200 \times 2}{W_0 4} = 263 \cdot 9K$	
	$P_{2}V^{\gamma} = 3.39 \times 10^{4} \times 2^{1.4} \times V^{1.4}$	
	$P_4 = \frac{13V_3}{V_4^{\gamma}} = \frac{5.57 \times 10^{-7} \times 2^{-7} \times V}{V^{1.4}} = 8.95 \times 10^4 Pa$	
<i>d.i</i>)	Boyle's law states that the pressure of a fixed mass of a gas is	
	inversely proportional to its volume at constant temperature	
ii)		
	scale	
	Constant	
	The formation of the second se	
	Dry air h^{-} h^{-}	
	\square	
	$ -E(\lambda) //2$	
	• Pressure of the dry air, $H + h$ is measured and recorded	
	• The volume V is obtained from the mm scale	
	• The procedure is repeated by adding more mercury in the open limb	
	• A graph of pressure against $\frac{1}{2}$ is plotted	
	• A graph of pressure against V is proteed.	
	• A straight line shows that $P \propto \frac{1}{V}$	
9. a.i)	✓ Intermolecular forces of attraction are negligible	
	✓ The volume of the molecules is negligible compared to the	
	volume of the gas	
	 Molecules are like perfect elastic spheres The duration of a colligion is neglicible command to the time 	
	between collision	
ii)	Dalton's law states that the pressure of a mixture of gases that	
	do not chemically react is equal to the sum of the partial	
	pressures of the individual gases.	
iii)	$D = \frac{1}{2\pi^2} \rightarrow D = \frac{1}{Nm} \frac{3}{\pi^2} \rightarrow N = \frac{3}{N}$	
	$r = \frac{1}{3}\rho c^{2} \implies r = \frac{1}{3} \frac{1}{V} c^{2} \implies N = \frac{1}{mc^{2}}$	
	For a mixture of gases, $N = N_1 + N_2 + N_3$	

	$\Rightarrow N = \left(\frac{3VP_1}{m_1\overline{c_1^2}}\right) + \left(\frac{3VP_2}{m_2\overline{c_2^2}}\right) + \left(\frac{3VP_3}{m_2\overline{c_2^2}}\right)$	
	But at the same temperature, $m_1 \overline{c_1^2} = m_1 \overline{c_2^2} = m_1 \overline{c_3^2} = m \overline{c^2}$	
	$\Rightarrow \frac{m\overline{C^2}N}{2} = P_1 + P_2 + P_3 \text{ but } \frac{m\overline{C^2}N}{2} = P$	
	$\Rightarrow P = P_1 + P_2 + P_3$	
b. i)	When the temperature increases, the pressure will increase. This	
	is because the kinetic energy of the gas molecules increases and	
	they collide with the walls of the container with a higher	
	velocity thus a higher rate of change in momentum. Since the	
	volume is constant, the molecules will move to the walls in a shorter time and the number of collisions made per second will	
	also increase hence a high pressure	
ii)	Water boils when its S.V.P is equal to the atmospheric pressure.	
,	The atmospheric pressure at the top of a mountain is smaller	
	than that at the bottom of the mountain. Therefore, water and	
	the top of the mountain will boil at a lower S.V.P than at the	
	bottom of the mountain. S.V.P increases with increase in	
	temperature, this implies that lower S.V.P is attained at a lower	
	temperature hence water boils at a lower temperature on top of a mountain than at the bottom	
(i)	For A	
0.17	$3 \times 10^5 \times 500 P_4 \times 750$	
	$\frac{1}{283} = \frac{A}{283}$, $P_A = 2 \times 10^5 Pa$	
	For B	
	$1 \times 10^5 \times 250 - P_B \times 750$ $P_B = 2 \times 10^4 P_C$	
	$\frac{373}{373} = \frac{373}{373}, F_B = 3.5 \times 10$ Fu	
•••	Total Pressure $= 2.33 \times 10^5 Pa$	
11)	$PV = nRT \Rightarrow n = \frac{FV}{T}$	
	$n = n_A + n_B$	
	$(3 \times 10^5 \times 500)$ $(1 \times 10^5 \times 250 \times 10^{-6})$	
	$\left(\frac{1}{8\cdot31\times283}\right) + \left(\frac{1}{8\cdot31\times373}\right)$	
	$2.33 \times 10^{-6} \times 750 \times 10^{-6}$	
	$=$ $3.31 \times T$	
	$\Rightarrow T = \underline{292.7K}$	
10.a i)	<i>Cooling correction</i> is a small temperature added to the	
	observed maximum temperature during a heat experiment to	
	the experiment	
	the experiment.	

Page 13 of 54

	$\frac{V_H}{1.066} = \tan 31.6^0 \Rightarrow V_H = 1.066 \tan 31.6^0 = 0.656 cm s^{-1}$	
ii)	$Eq = 6\pi\eta r V_0, E = \frac{3000}{0.005} = 6 \times 10^5 V m^{-1}$	
	$\begin{array}{c} 0.005 \\ 6 \times 3.14 \times 1.816 \times 10^{-5} \times 1 \times 10^{-5} \times 0.656 \times 10^{-2} \\ \end{array} \text{or } 17.6 \\ \end{array}$	
	$q = \frac{1}{6 \times 10^5} = \frac{3.741 \times 10^{-17} \text{C}}{2.741 \times 10^{-17} \text{C}}$	
iii)	$\frac{4}{3}\pi r^3(\rho_{oil}-\rho_{air})g$	
	$= 6 \times 3.14 \times 1.816 \times 10^{-5} \times 1 \times 10^{-5}$	
	$\times 1.066 \times 10^{-2}$	
	$\frac{4}{3} \times 3.14 \times (1 \times 10^{-5})^3 \times 9.81(880 - \rho_{air}) = 3.647 \times 10^{-11}$	
	$880 - \rho_{air} = 888$	
	$ ho_{air}=-8kgm^{-3}$	
d	$E_1 = 13.6eV, \ E_3 = \frac{-13.6}{3^2} = -1.51eV$	
	$E_3 - E_1 = -1.51 + 13.6 = 12.09 eV$	
	$hf = 12.09 \times 1.6 \times 10^{-19} = 1.9344 \times 10^{-18}$	
	$f = \frac{1.9344 \times 10^{-18}}{6.6 \times 10^{-34}} = 2.93 \times 10^{15} Hz$	
13.a	\checkmark For every metal surface, there is a minimum frequency of the	
	incident radiation below which photoelectric emission will	
	not take place.	
	\checkmark There is no detectable time lag between irradiation of the	
	metal and emission of electrons.	
	Ine kinetic energy of emitted electrons ranges from zero to a definite maximum value which is propertional to the	
	frequency of the incident radiation	
	✓ The number of electrons emitted per second (photo current)	
	is proportional to the intensity of the incident radiation for a	
	given frequency.	
b.	Ultra violet	
	Gold leaf electroscope	
	• When U.V radiation is incident on the clean zinc plate, the	
	negatively charged GLE collapses	
	• The collapsing stops when Ultra Violet radiation is blocked.	

	• The leaf collapses because the zinc plate emits electrons and	
	negative charge is lost from the GLE	
c. i)	Work function $\phi_0 = \frac{hc}{\lambda} = 4 \times 1.6 \times 10^{-19} J$	
	$\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{4 \times 1.6 \times 10^{-19}} = 3.094 \times 10^{-7} m$	
ii)	$hf = \phi + \frac{1}{2}mv^2 \Rightarrow \frac{1}{2}mv^2 = \frac{hC}{\lambda} - \phi$	
	$= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{0.2 \times 10^{-6}} - 6.4 \times 10^{-19}$ $= 3.5 \times 10^{-19}$	
	$V = \sqrt{\frac{2 \times 3.5 \times 10^{-19}}{9.11 \times 10^{-31}}} = \underline{8.77 \times 10^5 m s^{-1}}$	
d. i)	<i>Mass defect</i> of the nucleus is the difference between the mass of	
	the nucleus and the sum of the masses of its individual nucleons	
ii)	✓ Most of the alpha particles went through the gold foil	
	undeflected because most of the space of an atom is empty	
	space.	
	✓ Some alpha particles were deflected through angles less than	
	90°, implying that the positive charge of the atom was	
	concentrated at the centre of the atom, in the nucleus	
	✓ Very few alpha particles were deflected through angles	
	greater than 90° and did not go through the foil because the	
	nucleus occupies a very small volume of the atom and the	
	mass of the atom is concentrated at the nucleus.	
iii)	Q_1Q_2 1.6 × 10 ⁻¹⁹ × 79 × 1.6 × 10 ⁻¹⁹ × 9 × 10 ⁶	
	$Energy = \frac{1}{4\pi\varepsilon_0 r} = \frac{r}{r}$	
	$= 5 \times 10^{6} \times 1.6 \times 10^{-19} I$	
	$n = \frac{1.6 \times 10^{-19} \times 79 \times 1.6 \times 10^{-19} \times 9 \times 10^{9}}{2.2752} \times 10^{-14} m$	
	$I = \frac{1}{5 \times 10^6 \times 1.6 \times 10^{-19}} = \frac{2.2752 \times 10^{-17} \text{m}}{10^{-17} \text{m}}$	
14.a i)	Binding Energy is the minimum energy released when	
	individual nucleons combine to form a nucleus	

e. i)	<i>Half-life</i> is the time taken for half the number of atoms (nuclei)	
	in a radioactive sample to decay	
	Decay constant is the ratio of number of nuclei disintegrating	
	per second to the number of active nuclei in the sample.	
ii)	$N_0 = \frac{2}{222} \times 6.02 \times 10^{23} = 5 \cdot 42 \times 10^{21} atoms$	
	Spherical Area on which radiation falls = $4 \times 3 \cdot 14 \times 20^2$	
	$= 5024 cm^2$	
	$\frac{A_0}{5024} = \frac{85}{10} \Rightarrow A_0 = 42704Bq$ $A_0 = \lambda N_0 \Rightarrow \lambda = \frac{42704}{10} = 7 \cdot 87 \times 10^{-18}$	
	$n_0 = n_{10} = n = \frac{5.42 \times 10^{21}}{5.42 \times 10^{21}} = \frac{100}{100}$	
	$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \underline{8 \cdot 8 \times 10^{16} s}$	

PHYSICS PAPER TWO

Qn.	Approach	Remarks
1(a)(i)	<i>Chromatic aberration</i> is a defect in lenses which occurs when the	
	constituent colours of white light are brought at different foci instead	
	of one focus leading to the production of coloured images. This is so	
	because different colours have different refractive indices with the red	
	light being deviated least and violet the most.	
(ii)	Chromatic aberration is corrected by placing a suitable diverging lens	
	besides a converging lens to form a combination called <i>achromatic</i>	
	<i>doublet.</i> This recombines the colours of white light after refraction	
	through the lens combination as illustrated in the diagram below;	
	Beam of	
	white light	
(b)(i)	<i>Refractive index of a material</i> is the ratio of sine of angle of incidence	
	to the sine of the angle of refraction for a ray of light travelling from a	
	vacuum/air to a material.	
	OR it is the ratio of speed of light in air (vacuum) to speed of light in a	
	material.	
(ii)	Consider a monochromatic ray of light incident on a glass block of	
	refractive index, <i>n</i> at an angle of incidence, <i>i</i> . On striking the glass	
	block, it undergoes refraction through an angle, r as shown in the	
	figure below	
	Consider triangle UAB	

$$\cos r = \frac{t}{OB}$$

$$OB = \frac{t}{\cos r} - - - - -(i)$$

$$Consider triangle OBC$$

$$\sin \alpha = \frac{d}{OB}$$

$$OB = \frac{d}{\sin \alpha} - - - - - (ii)$$

$$Considering (i) and (ii)$$

$$d = \frac{t \sin \alpha}{\cos r} - - - - - (*)$$

$$At point O$$

$$i = r + \alpha \Rightarrow \alpha = i - r$$

$$\sin \alpha = \sin(i - r) = \sin i \cos r - \cos i \sin r - - - - - (iii)$$

$$But \sin^2 r + \cos^2 r = 1$$

$$\Rightarrow \cos r = \sqrt{1 - \sin^2 r} - - - - - (iv)$$

$$Substitute(iii) and (iv) in (*)$$

$$d = \frac{t(\sin i \cos r - \cos i \sin r)}{\sqrt{1 - \sin^2 r}} - - - - - (**)$$

$$Also, applying snell's law at O$$

$$n_a \sin i = n \sin r$$

$$\Rightarrow \sin r = \frac{\sin i}{n} - - - - - (v)$$

$$Substitute (iv) and (v) into (**)$$

$$d = \frac{t\left(\left(\sqrt{1 - \left(\frac{\sin i}{n}\right)^2}\right)\sin i - \frac{\sin i}{n}\cos i\right)}{\sqrt{1 - \left(\frac{\sin i}{n}\right)^2}}$$

$$d = \frac{t\left(\left(\sqrt{1 - \left(\frac{\sin i}{n}\right)^2} - \frac{\sin i}{\sin r}\right)\right)}{1 - \sqrt{1 - \sin^2 r}}$$

$$d = \frac{t\left(\left(\sqrt{1 - \left(\frac{\sin i}{n}\right)^2} - \frac{\sin i}{\sin r}\right)\right)}{1 - \sqrt{1 - \left(\frac{\sin i}{n}\right)^2}}$$

(c) For red

$$\frac{1}{f_R} = (n_R - 1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$\frac{1}{f_R} = (1 \cdot 514 - 1)\left(\frac{1}{30} + \frac{1}{20}\right)$$

$$\frac{1}{f_R} = 0 \cdot 514\left(\frac{1}{30} + \frac{1}{20}\right)$$

$$f_R = 23.35cm$$
For blue

$$\frac{1}{f_B} = (n_B - 1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$\frac{1}{f_B} = (1 \cdot 524 - 1)\left(\frac{1}{30} + \frac{1}{20}\right)$$

$$f_B = 22.9cm$$
The separation, f between the foci of red and blue is;

$$f = f_R - f_B$$

$$f = 23 \cdot 35 - 22 \cdot 9$$

$$= 0 \cdot 45cm$$
(d)
$$\frac{1}{1}$$
Image of
the pin
He masured and recorded distance is the focal length f; of the convex lens.
A small amount of a liquid whose refractive index, n_L is to be determined is pour do not place on the place

	$\langle AXB = \langle XCP = \alpha \text{ (alternate angles)} \rangle$	
	FC = FX (isosceles triangle FXC)	
	For X very close to P. $FX \approx FP$	
	Therefore, $CF = FP$	
	2FP = CP = r	
	r = 2f	
<i>(b)</i>	When a lamp is placed at the principal focus of a parabolic mirror, all	
	rays from this lamp that strike the mirror at points close to and far from	
	the principle axis will be reflected parallel to the principle axis and the	
	intensity of the reflected beam remains practically undiminished as the	
	distance from the mirror increases unlike for a concave mirror where	
	rays from a lamp at its focus is reflected at different directions	
	therefore the intensity of the reflected beam diminishes as the distance	
	from the mirror increases.	
	Therefore, parabolic mirrors instead of concave mirrors are used as	
	reflectors in search lights.	
(c)	<i>Magnifying Power</i> is the ratio of the angle subtended by the final	
	image at the eye when using an optical instrument to the angle	
	subtended by the object at the eye when the object is at the near point.	
	Resolving Power is the ability of an optical instrument to produce	
	separate images of close objects.	
(d)(i)	Given $f_o = 20mm$, $f_e = 50mm$	
	Lens separation, $d = 220 \text{cm}$	
	$d = V_0 + f_e$	
	$220 = V_0 + 50$	
	$V_0 = 170 mm$	
	Action of the objective	
	$\left \frac{\overline{f_0}}{\overline{f_0}} - \frac{\overline{U_0}}{\overline{U_0}} + \frac{\overline{V_0}}{\overline{V_0}} \right $	
	$\frac{1}{20} = \frac{1}{U_0} + \frac{1}{170}$	
	1 1 1 1	
	$\frac{1}{U_0} = \frac{1}{20} - \frac{1}{170}$	
	$U_0 = 22.67mm$	
(ii)	$D(V_0, 1)$	
	$M = \frac{1}{f_e} \left(\frac{1}{f_0} - 1 \right)$	
	250(170)	
	$M = \frac{1}{50} \left(\frac{1}{20} - 1 \right)$	
	M = 37.5	

(e)(i)	Objective Lens Eye Piece Lens	
	f_0 f_e F_0, F_e	
	Angular Magnification, $M = \frac{\beta}{\alpha}$ (1)	
	From the diagram;	
	$tan \beta = \frac{h}{\epsilon}$ and $tan \alpha = \frac{h}{\epsilon}$	
	But for small angles measured in radians:	
	$\alpha \approx tan \alpha \text{ and } \beta \approx tan \beta$	
	$\Rightarrow \alpha = \frac{h}{a} \text{ and } \beta = \frac{h}{a}$	
	f_0 f_e Substitute α and β in (1)	
	h h	
	$M = \frac{\pi}{f} / \frac{\pi}{f_{c}}$	
	f_0	
	$M = \frac{f_0}{f_0}$	
(ii)	This is done by introducing an erecting lens of focal length, f between	
	the objective and the eye piece lenses. The erecting lens has no effect	
	on the magnitude of angular magnification produced and it is placed a	
	distance 2f after the principal focus of the objective lens and a distance	
	2f before the principal axis of the eye piece lens.	
	The objective lens forms a real inverted image of a distant object at its	
	focal point, F_0 and this image acts as a real object of the erecting lens	
	which forms a real erect image of the same size as the image formed	
	The final image formed is also erect	
$\frac{3}{(a)(i)}$	Deviation of light by a prism is the change in direction of light due to	
	refraction at the prism's two non - parallel faces.	

Page 25 of 54

From the *Fig. (i)* above; $\tan D = \frac{h}{r}$ But for small angles in radians; $\tan D \approx D$ Consider normals at points Q and R going through centres of curvature C_1 and C_2 respectively as shown *Fig.(ii)*. The normal meet the tangents to the lens surfaces at points P and Q respectively. From the diagram; Also $\tan \alpha = \frac{h}{r_1}$ and $\tan \beta = \frac{h}{r_2}$ But for small angles in radians; $\tan \alpha \approx \alpha$ and $\tan\beta \approx \beta$ $\Rightarrow \alpha = \frac{h}{r_1} \text{ and } \beta = \frac{h}{r_2} \dots \dots \dots \dots \dots (*)$ Substituting (*) in 2 gives; For a prism of small refracting angle, A. d = (n-1)AFrom(1) $\Rightarrow \frac{h}{f} = (n-1)A \dots \dots \dots \dots \dots \dots \dots (**)$ Equation 3 and (**) give; $\frac{h}{f} = (n-1)\left(\frac{h}{r_1} + \frac{h}{r_2}\right)$ $\frac{1}{f} = (n-1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ Consider the liquid lens (ii) $\frac{1}{f_l} = (n_l - 1) \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$ $\frac{1}{f_1} = (1.4 - 1) \left(-\frac{1}{23} + \frac{1}{\infty} \right)$ $f_1 = -57.5cm$ For the combination

(<i>d</i>)(<i>i</i>)	$\frac{1}{f} = \frac{1}{f_l} + \frac{1}{f_g}$ $\frac{1}{37.3} = \frac{1}{-57.5} + \frac{1}{f_g}$ $\frac{1}{f_g} = \frac{1}{37.3} + \frac{1}{57.5}$ $f_g = 22.62cm$ Consider the glass lens $\frac{1}{f_g} = (n_g - 1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ $\frac{1}{22.62} = (n_g - 1)\left(\frac{1}{23} + \frac{1}{23}\right)$ $n_g - 1 = 0.51$ $n_g = 1.51$ Spherical aberration is a defect promirrors. It occurs when rays which a principal axis fail to converge a sing at different focal points which result image.	duced in both lenses and spherical are parallel and far from the gle focal point but instead converge ts into a blurred and distorted final	
(11)	 Prisms don't tannsh of deteriorate plane mirrors lose the silvering s Prisms form brighter images that mirrors absorb more of the incide images. Prisms produce clear images that plane mirrors produce blurred im multiple images. 	ar plane mirrors. This is because of plane mirrors. This is because ent light and produce fainter of plane mirrors. This is because mages due to the formation of	
4(a)(i)	Progressive waves	Stationary wayes	
	Transfer energy from one end to another along the medium. The amplitude of vibration of the particles is constant.	Doesn't transfer energy along the medium. The amplitude of vibration of particles varies from place to place	
	They consist of crests and troughs/ consist of compressions and rarefactions.	Consist of nodes and antinodes.	

	The phase of vibration varies	The phase of vibration of	
	from point to point along the	particles is constant between	
	wave profile.	nodes.	
(ii)	• They have constant amplitude		
	• They move with constant speed		
	• They have constant frequency		
	• They transfer energy along the pr	rofile	
	The transfer of sound energy is poss	sible when vibrating molecules hit	
	the next layer of molecules in the at	mosphere in a direction parallel to	
	motion	ve. mus, a longitudinar wave	
(h)			
(0)	Sounding tuning fork		
	Resonance tube		
	• The resonance tube is filled with	water and a sounding tuning fork	
	of known frequency, f is held ove	r the open end of the tube.	
	• The tap is opened and water is all	owed to flow gradually until a loud	
	sound is heard.		
	• The tap is immediately closed and massured and recorded	a the length, <i>l</i> of the air column is	
	• The experiment is repeated with	different tuning forks of known	
	fraguancias. The results are tabul	lated including values of $\frac{1}{2}$	
		acconnection $\frac{1}{f}$.	
	• A graph of <i>l</i> against $\frac{1}{f}$ is plotted a	and the intercept, C on the <i>l</i> axis is	
	obtained.		
	• The end correction of the tube, <i>e</i>	=-C.	
(<i>c</i>)	Given: $l = 0 \cdot 4m$, $f_n = 960Hz$, $v =$	$= 330 m s^{-1}$	
	$\int f_n = \frac{n\nu}{4k}$		
	$\frac{4l}{n \times 330}$		
	$960 = \frac{400000}{4 \times 0.4}$		
	n = 4.65		
	$n \approx 5$		
	The air column is vibrating produci	ng the 2^{nd} overtone.	

Page 28 of 54

(d) (i)	Doppler effect is the apparent change in the frequency of a wave due to relative motion between the source and the observer.Beats are a periodic rise and fall in the intensity of sound heard when two notes of nearly equal frequencies but similar amplitudes are sounded together.	
(ii)	 A spectral photograph of an arc or spark of light from an element known to be in the star is taken in a laboratory and its wavelength, λ is recorded. A spectral photograph of the star is taken and the corresponding 	
	• Velocity of the star is calculated from $u_s = \frac{c \lambda^1 - \lambda }{\lambda}$. Where c is the speed of light in air/vacuum	
(e)	$Given: \frac{f_1'}{f_2^{-1}} = \frac{5}{4}$ $Case 1$ $f_1^{-1} = \left(\frac{v}{v - u_s}\right) f$ $f_1^{-1} = \left(\frac{340}{340 - u_s}\right) f (i)$ $Case 2$ $f_2' = \left(\frac{v}{v + u_s}\right) f$ $f_2' = \left(\frac{340}{340 + u}\right) f (ii)$ $\frac{f_1'}{f_1} = \frac{5}{4} = \frac{\left(\frac{340}{340 - u_s}\right)}{(-240 - x)}$	
5 (a)(i)	$J_{2}^{-} = 4 \left(\frac{340}{340+u}\right)$ $(340+u_{s}) = \frac{5}{4}(340-u_{s})$ $\frac{9u_{s}}{4} = \frac{340}{4}$ $U_{s} = 37 \cdot 8ms^{-1}$ A tone is a sound with a regular frequency produced by a musical	
(ii)	instrument A harmonic is a note whose frequency is an integral multiple of the fundamental frequency.	
(iii)	An overtone is a note with a frequency higher than the fundamental frequency produced along with the fundamental note.	

Page 30 of 54

(ii)
$$Case I$$

 $f_1^{-1} = \left(\frac{v - u_0}{v}\right)f - - - -(1)$
 $Case 2$
 $f_2' = \left(\frac{v + u_0}{v}\right)f - - - -(ii)$
 $f_2' - f_1^{-1} = 5$
 $\left(\left(\frac{v + u_0}{v}\right) - \left(\frac{v - u_0}{v}\right)\right)f = 5$
 $\frac{2fu_0}{v} = 5$
 $\frac{2 \times 425u_0}{340} = 5$
 $u_0 = 2 \text{ ms}^{-1}$
(d) (i) Sound waves
They are longitudinal in nature
They are elongitudinal in nature
They are relatively low
Speed
They tave lat relatively low
Speed
They have relatively longer
Wavelength
(ii) To electric
Source
Bell jar
Gong
Gong
Gong
Gong
Hammer
Tap
To vacuum
pump
• When an electric bell inside a bell jar is switched on, a loud sound is
heard.

(f)	Fringe separation $y = \frac{3.9 \times 10^{-3}}{22}$	
	$y = 1.70 \times 10^{-4} m$	
	$a = \frac{\lambda d}{\gamma}$ where d is the distance from the slits, a is the slit separation	
	$5.5 \times 10^{-7} \times 0.31$	
	$a = \frac{1.70 \times 10^{-4}}{1.70 \times 10^{-4}}$	
	$a = 1.003 \times 10^{-3}m$	
7(a)(i)	<i>Magnetic field strength</i> is the force experienced by a straight	
	perpendicular to a uniform magnetic field.	
(ii)	Magnetic flux is the product of the magnetic flux density and the area	
	element perpendicular to the field at that point.	
(b)(i)		
	$ \psi \psi \psi \odot \lambda \lambda \lambda^{2} \times \langle \psi \psi \odot \rangle \lambda \lambda \lambda$	
(;;)	Magnetic field strongth at D	
(11)	From $B = \frac{\mu_0 I_x}{r_c}$	
	$\frac{1}{2\pi r_{px}} = \frac{1}{2\pi r_{px}}$	
	$B_{x} = \frac{\mu_{0}I_{x}}{2\pi r_{nx}} = \frac{4\pi \times 10^{-7} \times 5}{2\pi \times 0.019} = 5 \cdot 2632 \times 10^{-5}T$	
	$B_{x} = \frac{\mu_0 I_y}{\mu_0 I_y} = \frac{4\pi \times 10^{-7} \times 9}{2} = 2 \times 10^{-4} T$	
	$\begin{array}{cccc} & & & \\ &$	
	$= 1 \cdot 4737 \times 10^{-4}T$	
(iii)	$F_{Px} = BxI_PL_p = \frac{\mu_0 I_x I_p L_p}{2\pi r}$	
	$4\pi \times 10^{-7} \times 5 \times 3 \times 5$	
	$ = \frac{-1}{2\pi \times 1.9 \times 10^{-2}} $ = 7.8947 × 10 ⁻⁴ N Attractive	
	$ \begin{bmatrix} - & \mu_0 I_y I_p L_p \end{bmatrix} $	
	$F_{Px} = B_X I_P L_P = \frac{1}{2\pi r_{py}}$	
	$=\frac{4\pi\times10^{-7}\times9\times3\times5}{2\pi\times0\times10^{-3}}$	
	$= 3 \times 10^{-3} N Attractive$	
	$F_p = F_{py} - F_{px} = 3x10^{-3} - 7 \cdot 8947 \times 10^{-4}$	

	$= 2.21053 \times 10^{-3}$ N towards X	
(iv)	• If a current carrying conductor, P is placed in the field of wires X	
	and Y due to currents I_X and I_Y , also a wire P sets a field around it	
	due to current.	
	• The setup field due to current through P interacts with the field of X	
	and Y which results into a greater magnetic flux density on one side	
	of the conductor P than the other.	
	• The resultant force is created from the side with a stronger field to	
	the side with a weaker field and it is this force that tends to move the	
	conductor P.	
(c)(i)	Angle of dip is the angle between the magnetic axis of a freely	
	suspended magnet at rest and the horizontal.	
(ii)	<i>Magnetic meridian</i> is the vertical plane containing the magnetic axis	
	of a freely suspended magnet under the action of the earth's magnetic	
	field.	
	OR It is a vertical plane in which a freely suspended magnet sets itself.	
(1)	OR It is a vertical plane containing the magnetic poles of the earth.	
(d)	∇	
	Br.	
	B_{-}	
	$B_V \psi$ γR 10	
	-5	
	(BG)	
	• The coil of the earth inductor of negligible resistance is connected	
	to a B.G of known sensitivity, k and resistance, R.	
	• The coil is placed with its plane horizontal and perpendicular to B_V	
	as well as the magnetic meridian using a plotting compass needle.	
	• The coil is then rotated through 180° along the horizontal axis and	
	the deflection, Θ_v of the B.G is noted.	
	• The B_v of the earth's magnetic field is then obtained from the	
	expression, $B_v = \frac{K \sigma_V K}{2 A N}$.	

	 The coil is again placed with its plane vertical and perpendicular to B_H as well as the magnetic meridian using a plotting compass needle. The coil is then rotated through 180⁰ along the vertical axis and the deflection, θ_H of the B.G is noted. The B_H of the earth's magnetic field is then obtained from B_H =	
	$\theta = \tan^{-1} \left(\frac{\theta_v}{\theta_H} \right)$	
8 (a)(i)	<i>Faraday's law</i> states that the magnitude of emf in a coil is directly	
	proportional to the rate of change of magnetic flux linking it.	
	<i>Lenz's law</i> states that the induced current flows always in such a direction to oppose the change causing it.	
<i>(ii)</i>	• When the field is on, as the block oscillates it cuts the magnetic	
	field lines which results into changing magnetic flux and an emf is	
	induced in it creating eddy current to circulate with in the metal	
	• The eddy current generates the magnetic field which opposes the	
	original field that causes the opposition to the motion of the metal	
	hence coming to rest in a short time	
	• When the field is off, there is no eddy currents generated which	
	results into the electromagnetic damping of the oscillation of the	
	metal. Its motion is only opposed by weaker mechanical friction	
	and air resistance with less impact hence oscillating for a longer	
	time.	

	• As side PQ moves up and RW down, an emf is induced in the coil	
	in the direction PQRW. In the vertical position, emf induced is	
	zero.	
	• As PQ begins to move down and RW up, emf is induced in the	
	direction WRQP, so current reverses in the coil. But at the same	
	time commutators change contacts with the carbon brushes S_1 to B_2	
	and S_2 to B_1 .	
	• Hence current continues flowing in the same direction in the load.	
(<i>d</i>)(<i>i</i>)	<i>Back emf</i> is an induced emf which opposes the applied voltage in the circuit.	
(ii)	Using $Va = E_b + Ir_a$	
	$220 = E_b + 1.5 \times 3$	
	$E_{b} = 215.5V$	
	But $E_b = BAN\phi$	
	$\omega = \frac{215.5}{0.74 \times 12 \times 10^{-4} \times 100} = 2426.8 \ rads^{-1}$	
9(a)(i)	<i>Self induction</i> is the process of generating an emf in the coil due to	
	changing current in the same coil	
	<i>Mutual induction</i> is the process of generating an emf in the coil due to	
	changing current in the nearby coil.	
(ii)	When the switch is closed, current flows in the coil and a magnetic	
	field is established.	
	When it is opened, magnetic flux in the coil collapses creating an emf	
	which appears as a large p.d between the contact points of the switch.	
	Since the contacts are very close, a high electric field intensity is	
	created which ionizes the air between the contacts producing negative	
	and positive ions that collide and neutralize violently causing a spark	

	• In the first half cycle when A is positive relative to B diodes D_1 and	
	D_2 are in forward bias and current flows through R in the direction	
	\underline{XY} ,while D_3 and D_4 are reverse biased.	
	• In the next half cycle when B is positive relative to A, diodes D_3 and	
	D_4 are forward biased and current flows through R in the direction	
	XY again while D_1 and D_2 are reverse biased.	
	• During both cycles current is passed through the ammeter in one	
	direction.	
11 (a)	Resistivity is the resistance between the opposite faces of a $1m^3$ of a material.	
	From $\rho = \frac{RA}{l} = \frac{\Omega m^2}{m} = \Omega m$. Thus its <i>S.I unit</i> is the Ωm	
(<i>b</i>)	Consider a resistor, R connected in series with a cell of <i>emf</i> , E and	
	internal resistance, r	
	E = I(R+r) (1)	
	Power output, $P_{out} = I^2 R$	
	Power input, $P_{out} = IE$	
	Efficiency, $\eta = \frac{P_{out}}{P_{in}} \times 100\% = \frac{I^2 R}{IE} \times 100\%$	
	$\eta = \frac{IR}{E} \times 100\% = \frac{IR}{I(R+r)} \times 100\%$	
	$\eta = \frac{R}{(R+r)} \times 100\%$	

(e) (i)	$R_s = 10\Omega$	
	At $0^{\circ}C$, $l_1 = 40cm$, $l_2 = 60cm$	
	At balance point, $\frac{R_0}{R_1} = \frac{l_1}{l_2} \Longrightarrow R_0 = \frac{40}{60} \times 10 = \frac{20}{3} \Omega$	
	At $100^{\circ}C$, $l_1 = 50cm$, $l_2 = 50cm$	
	$\frac{R_{100}}{R_{s}} = \frac{l_{1}}{l_{2}} \Longrightarrow R_{100} = \frac{50}{50} \times 10 = 10\Omega$	
	$At \ \theta^{\circ}C, \ l_{1} = 42cm, l_{2} = 58cm$	
	$\frac{R_{\theta}}{R_s} = \frac{l_1}{l_2} \Longrightarrow R_{\theta} = \frac{42}{58} \times 10 = \frac{210}{29} \Omega$	
	From $R_{\theta} = R_0 (1 + \theta \alpha)$	
	$R_{\theta} = R_0 (1 + \theta \alpha) \Longrightarrow \frac{210}{29} = \frac{20}{3} (1 + \theta \alpha)(1)$	
	$R_{100} = R_0 (1 + 100\alpha)^{-1}$	
	$10 = \frac{20}{3} (1 + 100\alpha) \Longrightarrow \alpha = 5 \times 10^{-3} K^{-1}$	
	From (1), $\theta = \frac{\left(\frac{210 \times 3}{29 \times 20} - 1\right)}{5 - 10^{-3}}$	
	$\theta = 17.24^{\circ}C$	
(ii)	$\rho_{\theta} = \frac{R_{\theta}A}{l} = \frac{210}{29} \times \frac{2.5 \times 10^{-4} \times 10^{-4}}{1.5} = 1.207 \times 10^{-7} \Omega m$	
(f)	Positive temperature coefficient of resistance.	
	This will result into increase in resistance of the heating element due to increase in its temperature when current flows through it	
12(a)(i)	<i>Action at a point</i> is the apparent loss of charge at the sharp points of a	
	charged conductor.	
	The high charge density at sharp points causes high electric field intensity that ionizes surrounding air molecules. Jons of similar charge	
	are repelled and ions of opposite charge are attracted hence	
	neutralizing the charge on the conductor.	
(ii)	When a negatively charged metal rod is placed on a neutral gold leaf, the leaf diverges because the electroscope gets charged by contact	
	When a sharp pin is placed on its cap with it's the sharp end facing	
	away, the divergence of the leaf decreases with time. At the sharp	
	point of the pin, there is a high charge density that causes a high	
	electric field intensity that ionizes surrounding air molecules, the	

	$But \theta = \sin^{-1} \left(\frac{9}{16}\right) = 34.24^{0}$ Resolving horizontally, $T \sin \theta = EQ \cos 50(ii)$ $(ii) \div (i)$ $\frac{T \sin \theta}{T \cos \theta} = \frac{EQ \cos 50}{mg - EQ \sin 50}$	
	$\frac{EQ\cos 50}{mg - EQ\sin 50} = \tan 34.24$ $EQ\cos 50 = mg\tan 34.24 - EQ\sin 50\tan 34.24$ $EQ(\cos 50 + \sin 50\tan 34.24) = mg\tan 34.24$ $Q = \frac{mg\tan 34.24}{E(\cos 50 + \sin 50\tan 34.24)}$	
	$Q = \frac{60 \times 10^{-3} \times 9.81tan 34.24}{1.24 \times 10^{5}(cos 50 + sin 50tan 34.24)}$ $Q = 2.77 \times 10^{-6}C$	
(ii)	From (i) $T = \frac{T \sin \theta = EQ \cos 50}{T = \frac{1.24 \times 10^5 \times 2.77 \times 10^{-6} \cos 50}{\sin 34.24}}$ $T = 0.3924N$	
(d)(i)	Equipotential surface is surfaces is one in which the potential is the same at all points. Examples include; Any spherical shell concentric with a point charge. The surface a charged conductor.	
(ii)	Suppose \vec{E} due to the charged surface makes an angle θ with the equipotential surface. \vec{E} $\vec{\theta}$ The work done to move 1C of a positive charge through a distance, x along the surface is; Work = Force × distance W = Fx	

	But $\vec{F} = \vec{E} \times 1 = \vec{E}$ where $Q = +1C$	
	Along the surface, $\vec{E} = E \cos \theta$	
	$\Rightarrow W = (E\cos\theta)x$	
	For an equipotential surface, Work, $W=0$	
	$\Rightarrow Ex\cos\theta = 0$	
	If $E \neq 0$ and $x \neq 0$, then, $\cos \theta = 0$	
	$\Rightarrow \theta = \cos^{-1}(0)$	
	$\therefore \theta = 90^{\circ}$	
	Hence \dot{E} is perpendicular to the equipotential surface	
13 (a)	<i>Capacitance</i> of a capacitor is the ratio of magnitude of charge on either	
	plate of the capacitor to the potential difference between the plates.	
	<i>A farad</i> is the capacitance of a capacitor when the magnitude of charge	
	of <i>1C</i> is stored on either plate and the p.d between the plates is <i>1V</i> .	
(b)(i)	Consider a battery with pd V, if it charges the capacitor to charge Q,	
	then	
	Energy supplied by the battery $E = VQ$	
	Heat disspated in the circuit	
	= energy supplied by the battery	
	 energy stored in the capacitor 	
	The small work δw done to move a small charge δq from one plate to	
	another is given by $\delta w = V \delta q$	
	The total work W done to charge the capacitor to Q from zero is given	
	by.	
	ι ίΩ	
	$W = \int V dq = \int \frac{q}{c} dq$	
	O^{2}	
	$W = \frac{q}{2C}$	
	But $C = \frac{Q}{Q}$	
	W = OV	
	The work done is stored as energy $\frac{1}{2}$	
	Thus $E = QV$	
	Energy stored in the capacitor $E_1 = \frac{QV}{2}$	
	Heat dissipated = $E - E_1$	
	$Energy lost = QV - \frac{QV}{QV} - \frac{QV}{QV}$	
	2 2	

	Heat dissipated = energy stored = $\frac{QV}{2}$	
(b)(ii)	Consider a charge $+Q$ at a distance x from A in an electric field where electric field strength is E. $V + \delta V = V$ +Q + A = B + F Suppose the points A and B are so close a small distance δx apart such that the electric field intensity is constant. Work done to move a charge of $+1C$ from B to A is $W = (V + \delta V) - V = \delta V$ Also Work, $W = E \times 1 \times (-\delta x) = -E\delta x$ $\Rightarrow W = -E\delta x$ $-E\delta x = \delta V$ $E = -\frac{\delta V}{\delta x}$ Electric field intensity at any point is equal to the potential gradient at	
(c)(i)	and near the point $A_{1} = \frac{\pi d^{2}}{4} = \frac{\pi \times (0.1)^{2}}{4} = 7.854 \times 10^{-3} m^{2}$ $A_{2} = \frac{\pi d^{2}}{4} = \frac{\pi \times (0.12)^{2}}{4} = 1.131 \times 10^{-2} m^{2}$ $C_{1} = \frac{A\varepsilon_{0}}{d} = \frac{7.854 \times 10^{-3} 8.85 \times 10^{-12}}{2.0 \times 10^{-3}} = 3.477 \times 10^{-11} F$ $C_{2} = \frac{A\varepsilon_{0}}{d} = \frac{1.131 \times 10^{-2} 8.85 \times 10^{-12}}{3.0 \times 10^{-3}} = 3.338 \times 10^{-11} F$ Effective capacitance $C = \frac{C_{1}C_{2}}{c_{1}+C_{2}} = \frac{3.477 \times 10^{-11} \times 3.338 \times 10^{-11}}{3.477 \times 10^{-11} + 3.338 \times 10^{-11}} = 1.705 \times 10^{-11} F$ $C_{2} = 1.705 \times 10^{-11} F$	
(ii)	$E = 1.703 \times 10^{-11}$ Fnergy stored in the system $F = \frac{CV^2}{120^2 \cdot 1.705 \times 10^{-11}}$	
	$E = 1.227 \times 10^{-7} I$	

(c) (i)	Consider a capacitor connected to a battery and charged to a p.d V The small work δw done to move a small charge δq from one plate to another is given by $\delta w = V \delta q$ The total work W done to charge the capacitor to Q from zero is given by. $W = \int_{0}^{Q} V dq$ $W = \int_{0}^{Q} \frac{Q}{c} dq$ $W = \frac{Q^2}{2C}$ The work done is stored as electrostatic energy between the	
	plates of the capacitor. P^{2}	
	Energy stored in the capacitor $E = \frac{q}{2C}$	
	But $C = \frac{1}{V}$ $E = \frac{Q^2}{2\left(\frac{Q}{V}\right)}$ $E = \frac{1}{-}OV$	
	2 ~	
(ii)	From $C_2 = \frac{A\varepsilon_0}{d}$, when the separation d is reduced, the capacitance C of	
	the capacitor increases. Also Energy $E = \frac{CV^2}{2}$ thus $E \propto C$. Therefore,	
	the energy reduces when the distance of separation reduces. This is because, when the capacitor is connected to the battery, the decrease in	
	capacitance results in a decrease in the amount of charge stored by the capacitor since $Q = CV$ and V is constant. This charge is returned to the battery thus a decrease in energy is as a result of the capacitor discharging.	

(;;;;)		
(111)	- $+$ $+$	
	- $+$ $+$	
	- $+$ $+$	
	- $+$ $+$ $+$	
	$- \bigoplus \overset{L}{\smile} d \bigoplus +$	
	$- \bigoplus +$	
	E_0	
	• When a dielectric is inserted between the plates of the capacitor, the	
	molecules of the capacitor get polarized forming positive charge	
	near the negative plate and negative charge near the positive plate	
	These charges are bound charges so they can't be neutralized. This	
	creates an electric field intensity E_{\pm} in a direction opposite to that of	
	the applied electric field intensity F_a in a direction opposite to that of	
	This reduces the electric field intensity $E - E - E$ between the	
	• This feduces the electric field intensity $E = E_0 - E_d$ between the plates of the approxitor	
	• Since $E = \frac{1}{a}$, a reduction in E reduces the P.d, V between the plates.	
	• From $C = \frac{Q}{V}$, a decrease in V increases the capacitance of the	
	capacitor. Hence presence of a dielectric increases capacitance of a	
	capacitor.	
(d)	For C_2 and C_3 with a dielectric	
	$C' = \frac{C_2 \varepsilon_r C_3}{C_3} = \frac{3 \times 2.3 \times 3}{2.091 \mu F}$	
	$C = \frac{1}{C_2 + \varepsilon_r C_3} - \frac{1}{3 + 2.3 \times 3} - 2.091 \mu r$	
	For C' and C_1	
	Total capacitance, $C = C' + C_1$	
	C = 3 + 2.091	
	$C = 5.091 \mu F$	
	Total charge, $Q = CV$	
	$Q = 5.091 \times 60$	
	$Q = 305.46\mu C$	
	But $Q = k\theta$	
	$305.46 = 4\theta$	
	$\theta = 76.365 divisions$	

END

Page 54 of 54