SECTION A (46 Marks) Answer all questions from this section A | 1. | (a) Write: (i) equation for ionization of methanoic acid in water. | (1 ½ marks) | | | | | | | |----|--|---|--|--|--|--|--|--| | | (ii) the expression for the acid constant Ka, for methanoic acid. | (½ mark) | | | | | | | | | (b) The molar conductivity of 0.1M methanoic acid solution at 25°0 Calculate the: | C is 16.2scm ² mol ⁻¹ . | | | | | | | | | (i) Degree of ionisation of methanoic acid at 25°C (molar conductive acid at infinite dilution at 25°C is 40 scm² mol-1) | vity of methanoic
(1 ½ marks) | | | | | | | | | | | | | | | | | | | (ii) Ionization constant, Ka for methanoic acid at 25°C. | (1 ½ marks) | | | | | | | | 2. | Write equations for the reaction of the following oxides with sodium hy (1 $\frac{1}{2}$ main (a) Chromium (III) oxide. | | | | | | | | | | | | | | | | | | | (c) Lead (II) oxide 3. Complete the following reaction equations and write the accepted mechanisms and the complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations and write the accepted mechanisms are complete the following reaction equations | (b) Beryllium oxide (c) Lead (II) oxide | | | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--|--| | a) $c_{H_3}c \equiv c_H$ $\xrightarrow{H_2O/H^+}$ | | | | | | | | | | | | | | | hanism.
(3marks) | | | | | | | | | | | | | b) CH ₃ CH = CH ₂ + HCI | (2marks) | | | | | | | | | | | | | 4. (a) State what is meant by the term diagonal relationship?. | (1mark) | | | | | | | | | | | | | (b) State three reasons why lithium and magnesium resemble. | (1 ½ marks) | | | | | | | | | | | | | | (c) Mention three properties to show the diagonal relationship betwee magnesium. | een lithium and
(3mark | |----|--|---------------------------| | 5. | 20cm ³ of a gaseous hydrocarbon, X was exploded with 100cm ³ of oxy explosion, the volume and cooling of the residual gas was found to be addition of concentrated potassium hydroxide, the volume reduced t (a) Determine the molecular formula of X. | 90cm ³ . On | | | (b) X reacts with ammoniacal copper (I) chloride solution. (i) State what is observed | (1mark) | | | (ii) Write equation for the reaction that takes place. | (1mark) | | 6. | (a) Synthetic rubber (Z) was made from monomers with structure. $ \begin{array}{c} {\rm CH_2=CHC=CH_2} \\ \\ {\rm CI} \end{array} $ (i) State the conditions for the reaction. | (1mark) | ### SECTION B (54 MARKS) # Answer six questions from this section | | formed. Write equation for the reaction. | (2marks) | |---|---|------------------------------------| | • | | | | ••••• | (b)The mixture from (a) was filtered and the residue warmed hydrochloric acid. | with concentrated | | | (i) State what was observed. | (1mark) | | | (ii) Write equation for the reaction | (1 ½ marks) | | | (c) The filtrate from (b) was divided into two portions. (i) To the first portion was added aqueous potassium iodide. S observed and write equation for the reaction. | itate what was
(2marks) | | | (ii) The second portion evaporated to dryness and then heated was observed and write equation for the reaction. | d strongly. State wh
(2 ½ marks | | | | | | | | | | 11. | Name reagent(s) that can be used to distinguish between the foll compounds and in each case state what is observed. a) | owing pairs of
(3marks) | |-----|---|----------------------------| | | OH and | | | | Reagent | | | | Observations | | | | | | | | (b) Ethanoic acid and chloroethanoic acid Reagent | | | | Observations. | | | | (c) | | | | and CH ₂ I Reagent | | | | | | | | Observations | | | | | | | | | |-----|---|--------------------|--|--|--|--|--|--|--| | | | | | | | | | | | | 12. | (a) State three properties in which manganese differs from magnesi | um.
(1 ½ marks) | : | (b) Write equation to show the reduction of manganate (VII) ion in | | | | | | | | | | | (i) Acidic medium | (1 ½ marks) | | | | | | | | | • | (ii) Alkaline medium | (1 ½ marks) | | | | | | | | | | (c) State what is observed when drops of acidified potassium manganate (VII) solution are added to each of the following solutions. In each case, write the equation of reaction. | | | | | | | | | | | (i) Hydrogen peroxide | (2marks) | (ii) Hot sodium oxalate solution. | (2marks) | | | | | | | | | | | | | | | | | | | 15. The phase diagram for a mixture of metals P and Q is shown below. - (a) Identify the regions A, B, C and D (i) A (ii) B (iii) C (iv) D - (b) State what point M represents. (1mark) - (d) Describe what would happen if a mixture containing 50% by mass of P and Q is cooled from $410^{\circ}C$ to $270^{\circ}C$. (3marks) (b) Y forms a yellow precipitate with 2,4-dinitrophenyl hydrazine and does not react with Tollen's reagent. Identify Y #### THE PERIODIC TABLE | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | |---|------------------|---------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------| | 1.0
H
1 | | | | | | | | | | | | | | | | 1.0
H | 4.0
H | | 6.9
Li
3 | 9.0
Be | 1 | | | | | | | | | | 10.8
B
5 | 12.0
C
6 | 14.0
N
7 | 16.0
O
8 | 19.0
F | 20.2
N
10 | | 23.0
Na
11 | 24.3
Mg
12 | | | | | | | | | | | 27.0
Al
13 | 28.1
Si
14 | 31.0
P
15 | 32.1
S
16 | 35.4
CI
17 | 40.0
A:
18 | | 23.0
Na
11
39.1
K
19
85.5
Rb
37 | 40.1
Ca
20 | 45.0
Sc
21 | 47.9
Ti
22 | 50.9
V
23 | 52.0
Cr
24 | 54.9
Mn
25 | 55.8
Fe
26 | 58.9
Co
27 | 58.7
Ni
28 | | 65.7
Zn
30 | | 72.6
Ge
32 | 74.9
As
33 | 79.0
Se
34 | 79.9
Br
35 | 83.8
Ki
36 | | 85.5
Rb
37 | 87.6
Sr
38 | 88.9
Y
39 | 91.2
Zr
40 | 92.9
Nb
41 | 95.9
Mo
42 | 98.9
Tc
43 | 101
Ru
44 | 103
Rh
45 | 106
Pd
46 | 108
Ag
47 | 112
Cd
48 | 115
In
49 | 119
Sn
50 | 122
Sb
51 | 128
Te
52 | 127
I
53 | 131
Xe
54 | | | 137
Ba
56 | 139
La
57 | 178
Hf
72 | 181
Ta
73 | 184
W
74 | 186
Re
75 | | 192
Ir
77 | 195
Pt
78 | 197
Au
79 | 201
Hg
80 | The second second | 207
Pb
82 | 209
Bi
83 | 209
Po
84 | 210
At
85 | 222
Rn
86 | | 223
Fr
87 | 226
Ra
88 | 227
Ac
89 | | | | | | 9 85 | The De | | | 5 34
CO 5 | CH S | | | | 2 3 | | Fr
87 | | 7 1 1 1 1 1 1 1 1 1 | 139
La
57 | 140
Ce
58 | 141
Pr
59 | 144
Nd
60 | 147
Pm
61 | 150
Sm
62 | 152
Eu
63 | 157
Gd
64 | 159
Tb
65 | 162
Dy
66 | 165
Ho
67 | 167
Er
68 | 169
Tm
69 | 173
Yb
70 | 175
Lu
71 | | | | | 227
Ac
89 | 232
Th
90 | | 238
U
92 | 237
Np
93 | 244
Pu
94 | 243
Am
95 | 247
Cm
96 | 247
Bk
97 | 251
Cf
98 | Es | | | No | 260
Lw
103 | ## **♥** ===END=== WELCOME TO SENIOR SIX, YEAR 2018 This is the last page of the printed paper, Page 14