SECTION A #### ATTEMPT ONLY THREE QUESTIONS IN THIS SECTION. - 1.a) Define the term **relative atomic mass**. (02 marks) - 1.b) Explain how **relative atomic mass** can be determined by the **mass spectrometer**. (09 marks) - 1.c) The mass spectrum of an element **Q** contained **four lines** at mass/charge of **54**, **56**, **57** & **58** with relative intensities of **5.84**, **91.68**, **2.17** & **0.31** respectively. - i. Explain what the term **relative intensities mean** and why the mass spectrum of element **Q** contains **4 lines**. (03 marks) - ii. Calculate the **relative atomic mass** of element **Q**. (02 marks) - 1.d) Explain why the **values of relative atomic mass** have no units. (01 mark) - 1.e) **Thorium decays** according to the equation below. $^{232}_{90}Th + \alpha \longrightarrow X + \beta \longrightarrow Y + \beta \longrightarrow Z$ Determine the **mass numbers** and **atomic numbers** of **X**, **Y** & **Z**. (03 marks) - 2.a) Explain the term **melting point**. (01 mark) - 2.b) State the **factors** which **affect the melting point**: (@01 mark) - i. Metals. - ii. Molecular substances. - 2.c) Explain the trend in melting points of the elements in **group (II)** and **group (VII)** of the periodic table. (05 marks) - 2.d) Explain why transition metals of **period 4** tend to have **higher melting points** than non-transition metals of the same period. (02 marks) - 2.e) The table below shows melting points of some compounds. | Compounds | Melting point/K | |--------------------|-----------------| | Aluminium oxide | 2290 | | Aluminium chloride | 451 | | Calcium oxide | 2850 | | Calcium chloride | 1051 | ## Explain why: - i. The melting point of aluminium chloride is abnormally low compared to that of aluminium oxide. (02 marks) - ii. The melting point of calcium oxide is much higher than that of calcium chloride. (02 marks) - 2.f) Determine the freezing point depression for a solution containing $\mathbf{0.025g}$ of sodium chloride in $\mathbf{200.0g}$ of water. (03 marks) (Molar freezing point constant of water, $K_f = 1.86 \, ^{\circ}\text{C/mol/k}$) - 2.g) Explain why a solution of aluminium nitrate turns blue litmus paper red. (03 marks) - 3. Be, Mg, Ca, Sr & Ba are elements in group (II) of the periodic table. - 3.a) Describe and explain the trend in the reactivity of the elements with water down the group. (05 marks) - 3.b) Compare the solubility and basicity of the hydroxides of group (II) elements with the hydroxides of group (I). (03½ marks) - 3.c) (i).Explain why beryllium and aluminium show a diagonal relationship. (02 marks) - 3.c) (ii).Write equations to show how beryllium and aluminium each react with concentrated sodium hydroxide solution. (03 marks) - 3.d) G is a chloride of beryllium contains **11.25%** beryllium. - i. Calculate the empirical formula of G. $(01\frac{1}{2} \text{ marks})$ - ii. Determine the molecular formula of G. (01 mark) (Vapour density of G = 80) - iii. Write the structural formula of G. (01 mark) - 3.e) Explain why beryllium form more complexes compared to the rest of the group members. (03 marks) - 4.a) Complete the following equations and in each case outline the mechanism for the reaction. a. $$CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} \longrightarrow (02\frac{1}{2} \text{ marks})$$ b. $$(CH_3)_3CC1 \xrightarrow{CH_3CH_2O^-K^+/CH_3CH_2OH}$$ (03 marks) c. $$CH_3HC=CHCH_3 \frac{Conc.H_2SO_4/H_2O}{Warm}$$ (03½ marks) d. $$CH_3CHO + NaHSO_3 \xrightarrow{H^+}$$ (03 marks) e. $$CH_3CH_2CH_2CH_2OH \xrightarrow{Conc.H_3PO_4}$$ (03 marks) f. $$\longrightarrow$$ + Br₂ \longrightarrow (03 marks) 4.b) Write the IUPAC names of the products in (a) and (b) above. (02 marks) # SECTION B ATTEMPT ONLY TWO QUESTIONS IN THIS SECTION. - 5.a). Explain each of the following observations. - 5.a) Dimethylamine is a stronger base than phenylamine. (04 marks) - 5.b) The first ionization energy of aluminium is less than that of magnesium. (03 marks) - 5.c) The p^H of a solution of chromium (III) chloride in water is less than 7. (03 marks) - 5.d) Carbon dioxide is a gas at room temperature while silicon dioxide is a high-melting solid. (03 marks) - 5.e) 1-bromohexane undergoes nucleophilic substitution whereas bromobenzene does not. (04 marks) - 5.f) When solid lead (IV) chloride is added to water, white fumes are observed and a brown precipitate is formed. (03 marks) - 6.a). Write equations to show how the following conversions can be effected and indicate reagents and conditions for the reactions. g. $$CH_3CHCH_3$$ $CH_3 - C - S\bar{O}_3Na^+$ 03 marks) CH_3 CH_3 - 7.a). (i). Explain the term colligative property. $(01\frac{1}{2} \text{ marks})$ - 7.a). (ii).State four colligative properties of a solution. (02 marks) - 7.b). (i).Describe how molecular mas of a substance can be determined by elevation boiling point method. (07 marks) - 7.b). (ii) State three limitations of the methods. $(01\frac{1}{2} \text{ marks})$ - 7.c). Calculate the boiling point of an aqueous solution of urea,CO(NH₂)₂ of concentration **12g/dm**³ at a pressure of 101.3kpa.assume that the volume of the solute is negligible compared to that of the solution. The melting point elevation constant for water is **0.52°C/mol/kg**) (04 marks) - 7.d). (i).Explain the term mole fraction. (01 mark) - 7.d). (ii).Calculate the mole fraction of sodium chloride in an aqueous solution containing 10.0g of sodium chloride per 100.0g water. (03 marks) - 8.a) Chromium and manganese belongs to transition metal group of elements in the periodic table. | 1. | Write electronic configuration of chromium and ma | nganese | |------|--|------------------------------------| | | atoms respectively. | (01 mark) | | ii. | Write electronic configuration of chromium and ma | ngansese | | | ions in $Cr_2O_7^{2-}$, Cr_2O_3 and MnO_4^{-} . | (01½ marks) | | 8.b) | Define the term transition element and explain why | zinc ion is | | | not considered transition. | (04 marks) | | 8.c) | (i).Write half-cell equation for the reduction of MnO | ₄ - to Mn ²⁺ | | | and oxidation of I- to I ₂ under acidic conditions. | (03 marks) | | 8.c) | (ii).State four properties of transition elements. | (02 marks) | | 8.d) | Briefly describe how the percentage purity of mang | anese may be | | | determined from an ore containing manganese (IV) | oxide. | | | | (06½ marks) | | 8.e) | State the advantages and disadvantages of using po- | tassium | | | manganate (VII) in volumetric analysis. | (02 marks) | ### THE PERIODIC TABLE | | Т | | | | | | | | | | | | | | 4. | | | |------------------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|---------------------------------------| | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | | 1.0
H
1 | | | | | | | | | | | | | 1.0
H | 4.0
He
2 | | | | | 6.9
Li
3 | 9.0
Be | 1 | | | | | | | | | | 10.8
B
5 | 12.0
C
6 | 14.0
N
7 | 16.0
O
8 | 19.0
F
9 | 20.2
Ne
10 | | 23.0
Na
11 | 24.3
Mg
12 | | | | | | | | | | | 27.0
Al
13 | | 31.0
P
15 | 32.1
S
16 | 35.4
CI
17 | 1 | | 39.1
K
19 | 40.1
Ca
20 | 45.0
Sc
21 | | 1 | 52.0
Cr
24 | | 55.8
Fe
26 | | | | | 69.7
Ga
31 | 72.6
Ge
32 | 74.9
As
33 | 79.0
Se
34 | 79.9
Br
35 | 83.8
Kr
36 | | 85.5
Rb
37 | | 88.9
Y
39 | 91.2
Zr
40 | | 95.9
Mo
42 | 98.9
Tc
43 | 101
Ru
44 | 103
Rh
45 | 106
Pd
46 | 108
Ag
47 | 112
Cd
48 | 115
In
49 | 119
Sn
50 | 122
Sb
51 | 128
Te
52 | 127
I
53 | 131
Xe
54 | | 133
Cs
55 | 137
Ba
56 | 139
La
57 | 178
Hf
72 | 181
Ta
73 | 184
W
74 | 186
Re
75 | 190
Os
76 | 192
Ir
77 | 195
Pt
78 | 197
Au
79 | 201
Hg
80 | 204
TI
81 | 207
Pb
82 | 209
Bi
83 | 209
Po
84 | 210
At
85 | 222
Rn
86 | | 223
Fr
87 | 226
Ra
88 | 227
Ac
89 | . 7 | | 1 2 | 2 3 | | 170.
170. | le i | | 3 53 | 2 102 | TH. | | | | 4 4 4 4 4 4 4 4 4 4 | | | | 8 17 | 139
La
57 | 140
Ce
58 | 141
Pr
59 | | 147
Pm
61 | 150
Sm
62 | | | | | | | 169
Tm
69 | 173
Yb
70 | 175
Lu
71 | | | | y a | 227
Ac
89 | 232
Th
90 | 231
Pa
91 | 238
U
92 | 237
Np
93 | 244
Pu
94 | 243
Am
95 | 1 | 247
Bk
97 | 251
Cf
98 | Es | Fm | 256
Md
101 | No | 260
Lw
103 | # SUCCESS = END WELCOME TO SENIOR SIX, YEAR 2023 This is the last page of the printed paper, Page 05