P425/1 Pure Mathematics Paper 1 ARPIL 2025 3 hours

SET 6 Uganda Advanced Certificate of Education Pure Mathematics Paper 1 Time: 3 Hours

INSTRUCTIONS TO CANDIDATES:

- Answer all the eight questions in Section A and only five questions in Section B.
- ➤ Indicate the five questions attempted in section B in the table aside.
- > Additional question(s) answered will **not** be marked.
- > All working must be shown clearly.
- Graph paper is provided.
- Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

Qn 1: An arithmetic progression contains *n* terms. The first term is 2 and its common difference is $\frac{2}{3}$. If the sum of the last four terms is 72 more than the sum of the first four terms, find *n*. [5marks]

Qn 2: Find the equation of a circle which touches the line 3x + 4y = 9 has a centre (4, -7). [5marks]

Qn 3: Differentiate **cos** *x* from first principles. [5marks]

Qn 4: Four letters of the word "**HYPERBOLA**" are to be arranged in a row. In how many of these arrangements are the vowels separate? [5marks]

Qn 5: Solve for x, $2\sin^2\left(\frac{x}{2}\right) - \cos x + 1 = 0$, where $0 \le x \le 2\pi$. [5marks]

Qn 6: Prove that the integral of $\operatorname{cosec}\left(\frac{x}{2}\right)$ for x between π and $\frac{4\pi}{3}$ is ln 3. [5marks]

 $\mathbf{k}_{\sim} + \beta \left(-\mathbf{i}_{\sim} + \mathbf{j}_{\sim} + 2\mathbf{k}_{\sim} \right).$ [5marks]

Qn 8: The surface area of a sphere is decreasing at a rate of 0.9 m²/s when the radius is 0.6 m. Find the rate of change of the volume of the sphere at this instant. [5marks]

SECTION B (60 MARKS)

Question 9:

- (a). If the roots of the equation $x^2 + (x + 1)^2 = k$ are α and β ;
- (i). Prove that $\alpha^3 + \beta^3 = \frac{1}{2}(1 3k)$.
- (ii). Find a quadratic equation whose roots are α^3 and β^3 .
- (b). (i). Given that $|x| < \frac{1}{2}$, expand $\frac{1+5x}{\sqrt{1+2x}}$ upto the term in x^3 .
 - (ii). By substituting x = 0.04 in (b)(i) above, deduce the approximation of $\frac{1}{\sqrt{3}}$ correct to 4 decimal places. [12marks]

Question 10:

Given that $y = \frac{\sin x - 2 \sin 2x + \sin 3x}{\sin x + 2 \sin 2x + \sin 3x}$ (i). Prove that $y + \tan^2 \left(\frac{x}{2}\right) = 0$, and hence express the exact value of $\tan^2 15^\circ$ in the form $p + q\sqrt{r}$ where p, q and r are integers. (ii). Hence find the value of x between 0° and 360° for which

$$2y + \sec^2\left(\frac{x}{2}\right) = 0.$$
 [12marks]

Question 11:

Given the curve $f(x) = \frac{2x^3 - x^2 - 25x - 12}{x^3 - x^2 - 5x + 5}$;

- (a). Find the:
 - (i). value of x for which f(x) = 0.
 - (ii). assymptotes for f(x).
 - (iii). x and f(x) intercepts for the curve.
- (b). Sketch the curve.

Question 12:

A point representing the complex number Z moves such that $\left|\frac{Z-2}{Z-4}\right| > \frac{1}{2}$

- (i). Prove that the locus of Z is a circle.
- (ii). Find the centre and radius of this circle.
- (iii). Represent Z on the argand diagram.
- (iv). State the least and greatest values of |Z|.

Question 13:

(a). Given two vectors
$$\mathbf{a} = 3\mathbf{i} - 12\mathbf{j} + 4\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} + \mathbf{k}$; find:

- (i). the angle between \vec{a} and \vec{b} ,
- (ii). a vector that makes a right angle with \boldsymbol{a} and with \boldsymbol{b} .
- (b). Find the equation of the plane passing through the points A(1, 1, 0), B(3, -1, 1), C(-1, 0, 3) and find the shrotest distance of the point (3, 2, 1) to the plane. [12marks]

[12marks]

[12marks]

Question 14:

- (a). Using calculus of small increments, or otherwise, find $\sqrt{98}$ correct to one decimal place. [4marks]
- (b). Use Maclaurin's theorem to expand $\ln(1 + ax)$, where *a* is a constant. Hence or otherwise expand $\ln\left(\frac{1+x}{\sqrt{1-2x}}\right)$ up to the term in x^3 . For what value of *x* is the expansion valid? [8marks]

Question 15:

A tangent to the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ at a point, $P(6\cos\theta, 4\sin\theta)$ meets the minor axis at **A**. If the normal at **P** meets the major axis at **B**, find the:

- (i). Coordinates of *A*,
- (ii). Coordinates of **B**,
- (iii). Locus of the midpoint of AB.

Question 16:

(a). Find the general solution of

$$(x^2 + 1)\frac{dy}{dx} + 2x - 2xy = 0$$

(b). A moth ball evaporates at a rate proportional to its volume, losing half of its volume every 4 weeks. If the volume of the moth ball is initially 15 cm³ and becomes ineffective when its volume reaches 1 cm³, how long is the moth ball effective? [12marks]

END

[12marks]