P425/1 PURE MATHEMATICS PAPER 1 MARCH 2025 3 HOURS

Uganda Advanced Certificate of Education SET 4 PURE MATHEMATICS Paper 1 3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt ALL the EIGHT questions in section A and any FIVE from section B.
- All working must be clearly shown.
- Begin each question on a fresh sheet of paper.
- Mathematical tables with list of formulae and squared paper are provided.
- Silent, non-programmable calculators should be used.

Section A (40 marks)

- 1. Find the values of λ for which $10x^2 + 4x + 1 = 2\lambda x(2 x)$ has equal roots.
- 2. Prove that the maximum volume of a right circular cylinder which can be inscribed in a sphere of radius *r* is $\frac{4\pi r^3}{3\sqrt{3}}$.
- 3. A polynomial P(x) when divided by (x 1) leaves a remainder 3 and when divided by (x 2), leaves a remainder 1. Find the remainder when P(x) is divided by $x^2 3x + 2$.
- 4. Evaluate: $\int_0^{\frac{\pi}{4}} \frac{dx}{4-5\sin^2 x}$ correct to 4 decimal places.
- 5. Given that $x = t^2 t$ and $y = t^2 4$. Find $\frac{d^2y}{dx^2}$ in terms of t.
- 6. Find the angle between the line $r = i + 2j k + \lambda(i j + k)$ and the plane 2x y + z = 4.
- 7. Solve the equation: $\cos 2\theta + \cos 3\theta + \cos \theta = 0$ for $0 \le \theta \le 2\pi$.
- 8. Find the equation of the normal to the ellipse at the point $(5 \cos \theta, 3 \sin \theta)$.

Section B (60 marks)

- (a). Prove that the equation of the tangent to the parabola at the point $P(at^2, 2at)$ is $ty = x + at^2$.
 - (b). The tangents to the above parabola at the points $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ intersect at R. Find the coordinates of R.
 - (c). If the tnagents at P and Q are inclined to one another at the angle of 45° , show that the locus of R is $y^2 = x^2 + 6ax + a^2$.

9.

- 10. (a). Find the perpendicular distance of the point P(3, 0, 1) rom the line $r = i 2j + \lambda(3i + 4j + 12k)$.
 - (b). (i). A point A(1, 2, -3) and two non-parallel vectors 2i + 4k and -i 4j + 2k lie on a plane. Find the Cartesian equation of the plane.
 - (ii). Find the angle between the line in (a) above and the plane.
- 11. (a). Given that $z = \frac{(1-i)(\sqrt{3}-i)}{(1-i\sqrt{3})}$, express z is polar form.
 - (b). Show that the locus of $\left|\frac{z-1}{z+1}\right| = 2$ is a circle. State its centre and radius.
 - (c). Solve the equation $z^2 4(1+i)z + 9 + 8i = 0$.
- 12. Given the curve $y = \frac{x^2 5x + 6}{x 1}$;
 - (i). State all the asymptotes of the curve.
 - (ii). Find the turning points of the curve.
 - (iii). State the intercepts of the curve.
 - (iv). Hence sketch the curve.
- 13. (a). Prove that $\frac{1-\cos 2A+\sin 2A}{1+\cos 2A+\sin 2A} = \tan A$. (b) Solve the equation: $\sin 2\theta + 1 = \cos 2\theta$ for $0^\circ < \theta < 2^\circ$
 - (b). Solve the equation: $\sin 2\theta + 1 = \cos 2\theta$ for $0^\circ \le \theta \le 360^\circ$.
- 14. (a). If $e^x \frac{d^2 y}{dx^2} + 2e^x \frac{dy}{dx} + 2e^x y = 0$. (b). Integrate: (i). $\int x^2 e^{-3x} dx$

(ii).
$$\int \sin 3x \cos x \, dx$$

15. Express $\frac{x^4+2x}{(x-1)(x^2+1)}$ as partial fractions. Hence evaluate $\int \frac{x^4+2x}{(x-1)(x^2+1)} dx$ to 4 significant figures.

16. (a). Solve the differential equation $(1 + \cos 2\theta) \frac{dy}{dx} = 2$ for $y\left(\frac{\pi}{4}\right) = 1$.

(b). The rate at which a boy loses temperature at any instant is proportional to the amount by which the temperature of the body, at that instant exceeds that of its surroundings. A container of hot liquid is placed in a room of temperature 18°C and in 6 minutes, the liquid cools from 82°C to 50°C. How long does it take for the liquid to cool to 20°C ?

END