OLD KAMPALA SENIOR SECONDARY SCHOOL A'LEVEL CHEMISTRY SEMINAR QUESTIONS, 2024

ORGANIC CHEMISTRY

- 1. State what would be observed and write equations for the reaction(s) that would take place when the following pairs of substances are mixed.
 - (a) $CH_3CH=CH_2$ and bromine water.
 - (b) HCECH and ammoniacal copper(I) chloride solution.
 - (c) CH_3COCH_3 and sodium hydroxide in iodine solution.
 - (d) CH_3CHO and ammoniacal silver nitrate solution.
 - (e) HCOOH and Fehlings solution on heating.
- 2. Name a reagent that can be used to distinguish between the following pairs of compounds and in each case state what would be observed if each member is separately heated with the reagent.

3. Complete the following equations and in each case suggest a mechanism for the reaction

 H^+/H_2NCONH_2

- **(c)** *CH*₃*CH*₂*CHO*
- (d) *CH*₃*CHO* ______
- (e) CH_3COCl $CH_3CH_2NH_2$
- (f) CH_3COCH_3 ______KCN/H^+_(aq)
- 4. Write notes on the following. (your answer should include suitable examples and mechanisms for the reaction)
 - (a) Elimination reaction.
 - (b) Electrophilic substitution reaction
 - (c) Electrophilic addition reaction.

- 5. Write equations to show how the following conversions can be carried out. In each case, indicate the reagents and conditions for the reactions.
 - (a) 2-chloropropane to $CH_3CH_2CH_2NH_2$
 - (b) Nitrobenzene to $\sqrt{-}N=N-\sqrt{-}OH$
 - (c) Propan-2-ol to $(CH_3)_3COH$
 - (d) Ethanol to CH_3COCH_3
 - (e) Ethene to CH_3CH_2COOH
 - (f) CH_3CH_2OH to CH_3OH
 - (g) Calcium discribide to $CH_3C \equiv CCH_2CH_3$
- 6. (a) A compound A, $C_7H_{14}O_2$ reacted with sulphuric acid on heating to form compound B, $C_4H_{10}O$ and C, $C_2H_4O_2$ B reacted with sodium with effervescence but had no effect on litmus paper.
 - i) Write the names and structural formulae of all possible isomers of B.
 - ii) Name a reagent that can be used to distinguish between the isomers in (i) and state what would be observed if the isomers are reacted with the reagent.
 (b). B reacted with acidified dichromate solution to give compound D which formed a yellow solid with alkaline Iodine.
 Identify B, D and the yellow solid.
- c) Write equations and indicate a mechanism for the reaction between B and;
 - i) Concentrated orthophosphoric acid. ii)Ethanyl chloride.
- (b) Write the structural formula of A.
- 7. a) Differentiate between soap and soapless detergents.
 - b) Write equations to show how alkyl benzene sulphonate can be prepared from octadecan-1-ol, $CH_3(CH_2)_{16}CH_2OH$

(ii) sodium sulphate

c) Explain why the following compounds are added to soapless detergents;

(i) polyphosphates

- 8. a) Explain what is meant by ;
 - i) Addition polymerization
 - ii) Condensation polymerization
 - b) Write the structural formula of;
 - (i) Perspex
 - (ii) terylene
 - (iii)nylon 6,6
 - c) Name the type of polymerization leading to the formation of polymers in (b).
 - d) Explain the difference in properties of thermosetting and thermoplastics..
 - e) State how;
 - (i) vulcanisation of rubber is carried out.
 - (ii) vulcanisation improves the properties of rubber.
- 9. a) Write equations to show how the following compounds can be prepared.
 - i) Phenylamine
 - ii) Ethalymine (aminoethane)
 - b) Which one of phenylamine and ethylamine is a stronger base? Explain your answer.

Downloaded from www.mutoonline.com, you can download more pastpapers

- 10.a) Write equations for each of the compounds Phenylamine and ethyl amine reacting with;
 - i) ethanoyl chloride
 - ii) acidified sodium nitrite at $5^{\circ}C$

b) (i) Write a mechanism for the reaction of ethanoyl chloride with ethylamine.

ii) How can the reaction in b(i) be used to distinguish between phenylamine and ethylamine.

c) Phenylamine can be converted to benzene diazonium chloride, write equations (reagents and conditions to be given) for the conversion of diazonium salt into

(i) iodobenzene

(ii) benzoic acid

- (iii)an azo-dye
- 11. When 7.05g of an organic compound **T**, on complete combustion yielded 10.08dm³ of carbon dioxide and 4.05g of water at s.t.p. 0.225g of **T** on vaporisation at 273°C and at 56.287kNm⁻² occupied a volume of 193.04cm³.
 - (a) (i) Calculate the empirical formula of T
 - (ii) Determine the molecular formula of T
 - (b) **T** burns with a sooty flame. Identify **T**
 - (c) Write equation and suggest a mechanism for the reaction to show

how the following compounds can be synthesized from ${\bf T}$

- (i) methoxy benzene
- (ii) phenyl propanoate
- (iii) 4- hydroxyphenylethanone
- (d) State what was observed and write equation for the reaction when

aqueous bromine solution was added to T.

- 12. Using equations only show how the following conversions can be effected. Indicate conditions and suitable reagents.
 - (a) Phenylmethanol from bromobenzene and zinc turnings.
 - (b) 2- hydroxypropanoic acid from 1,2- dichloroethane.
 - (c) 3-methylbutan-1-ol from ethyne
 - (d) N- methyl- N- nitrosylphenylamine from nitrobenzene.
 - (e) Animoethane from propanoic acid
- 13. Describe how these conversions can be effected. Equations are not required;
 - a) Propanol to ethanol
 - b) Ethyne to benzoic acid
 - c) Butanoic acid to butan-2-ol
 - d) Ethanol to propan-2-ol

PHYSICAL CHEMISTRY

14. (a) State what is meant by the term partition coefficient.

(b) 4.5g of an impure sample of nickel(II) Sulpide was dissolved in excess concentrated solution of ammonia and the solution diluted to 500cm³. The resultant solution was shaken with 25cm³ of carbon tetrachloride layer and allowed to settle. 12.5cm³ of the aqueous layer required 20cm³ of 0.25M hydrochloric acid for complete reaction while 25.0cm³ of the carbon tetrachloride layer required 12.5cm³ of a 0.025M hydrochloric acid for complete reaction.

Calculate the number of:

- (i) free ammonia in aqueous layer. (KD for ammonia between carbon tetrachloride and water is 0.04)
- complexed ammonia. (ii)
- Determine the percentage by mass of nickel in the impure nickel(II) sulphide. (c)
- 15. (a) Define the following terms
 - (i) solute

Downloaded from www.mutoon

(ii) saturated solution

(b) The solubilities of potassium chloride and potassium nitrate at certain temperature are shown in the table below.

Temperature / °C	0	11	15	30	40	50	57
Soubility of potassium	27.9	31.0	32.0	36.5	40.0	43.0	45.0
choride / g per 100g of							
wager							
So <mark>g</mark> ubility of potassium	14.0	21.5	25.0	43.0	63.0	84.0	102.0
nitrate /g per 100g of							
wæer							

(i) Plot on the same axes, a graph of solubility against temperature for solubilities of potassium chloride and potassium nitrate.

State which one of the two salts has a solubility which increases less rapidly with (ii) increase in temperature.

- (iii) Determine the temperature at which the solubilities of the **two** salts are equal.
- (iv) A saturated solution of potassium nitrate at 30°C was cooled to 5°C. Determine the number of moles of potassium nitrate crystals formed.

inload more pastpapers (c) 25.2g of a solution saturated with copper(II) sulphate at 35°C was made to up 200cm³ with de-ionised water. 25.0cm³ of the diluted solution reacted with excess potassium iodide solution to liberate iodine which titrated against 33.5cm³ of 0.118M sodium thiosulphate solution. Calculate the solubility of copper(II) sulphate in grams per 100g of water.

Explain what would be observed when sodium chloride solution was added to lead(II) (d) nitrate solution and the mixture boiled and then allowed to cool.

16. (a) State distribution law.

Describe how the distribution coefficient of butanedioic acid can be determined (b) between ethoxyethane and water.

- An aqueous solution containing 5.0g of Q in 100cm^3 of solution. The partition (c) coefficient of Q between water and ethoxyethane is 0.20. Calculate the mass of Q extracted by shaking 100cm³ of the aqueous solution with.
 - 50cm³ of ether (i)
 - two successive 25cm³ portions of ether. (ii)
- 25cm^3 of 0.2M X²⁺ solution were mixed with 25cm^3 of 1M ammonia solution. The (d) total 50cm³ of the deep blue aqueous layer was shaken with 50cm³ of trichloromethane until equilibrium was attained. After the layers had settled, the whole of the organic layer required 4.0cm³ of 0.05M hydrochloric acid using indicator. The K_D of ammonia between phenolphthalein water and trichloromethane is 25.0 at room temperature. Determine the value of n in the complex, $[X(NH_3)_n]^{2+}$.

17. (a) What is meant by the term standard enthalpy of displacement?

Downloaded from The table shows the results of an investigation of the reaction of copper(II) (b) Sulphate solution with two divalent metals X and Y.

WW-mu	Time (minutes)	0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
teenine.	Temperature of mixture of X and 50cm ³ of 0.5M CuSO4	26.5	38.0	42.5	43.5	44.0	43.0	42.0	41.0
com, you	Temperature of mixture of Y and 50cm ³ of 0.5MCuSO4	26.5	33.5	35.0	36.0	37.0	38.0	38.0	38.0

- On the same axes plot graphs of temperature against time for the two (i) separate mixtures.
- From the graphs determine the maximum temperature attained by each (ii) mixture.
- (iii) Calculate the molar heat of displacement for each metal.
- Write equation for the reaction in each mixture. (iv)
- (v) What does 26.5°C in the table represent?
- (vi) Which of the metals is more reactive? Give a reason for your answer

(d) Calculate the Gibbs free energy for the cell formed between each metal and copper(II) sulphate solution. Given that the standard reduction potentials for the half cells are; X is -0.76V, Y is -0.44V and copper is +0.34V.

18. (a) State what is meant by the term eutectic mixture.

Table 1 below shows how the melting points of mixtures of copper and silver vary (b) with composition.

Percentage mixture	of	copper	in	the	0	20	40	70	80	100
Melting poin	t (°C)				961	830	830	955	1000	1085

can download more pastpapers

- (i) Draw a fully labelled diagram for the copper-silver system
- (ii) Determine the eutectic temperature and the composition of the eutectic mixture.

(c) (i) Describe the changes that would take place when a liquid mixture of the above system containing 50% copper is cooled from 1000°C to 700°C.

Calculate the mass of silver that precipitated if 200g of the liquid mixture (ii) containing 10% copper was cooled from 1000°C to 800°C.

Equations for some half - cell reactions are shown below (d)

> $E^{\circ} = +0.80V$ $Aq^{+}(aq) + e$ • Ag(s)

Write an equation for the overall cell reaction. (i)

- (ii) Calculate the E°_{cell} in (d)(i).
- (iii) Calculate the Gibb's free energy of the cell and state whether the reaction is feasible or not. Give a reason for your answer.

E^e = +0.34V

(e) Discuss the reactions of copper with sulphuric acid.

a) Silver ethanedioate is sparingly soluble in water. Write;

- i) equation for the solubility of silver ethanedioate in water.
- ii) the expression for the solubility product, Ksp, of silver ethanedioate.
- b) The solubility product, Ksp, of Silver ethanedioate in 5.3x10⁻³ mol⁻³l⁻³at 25°C. Calculate the concentration of the following ions in a saturated solution of silvers ethanedioate (i) silver ions.

(ii) ethanedioate ions.

Downloaded from www.mutoonline.com, you can download more pastpapers c) Calculate the mass of silver nitrate that should be added to the saturated solution in (b) in order to reduce the concentration of ethanedioate ions to a third of its original values. 20. Propanone reacts with iodine in the presence of an acid catalyst according to the equation.

 $CH_3COCH_{3(aq)} + I_{2(aq)} \longrightarrow CH_3COCH_2I_{(aq)} + HI_{(aq)}$

The reaction is first order with respect to propanone and independent of the concentration of iodine.

- Explain the term order of reaction (i)
- Write an expression for the rate law of the reaction. (ii)
- Describe briefly how the order of the reaction with respect to iodine can be (iii) determined.
- 21. The equations for some redox reactions are shown below.

 $2H^{+}_{(aq)} + 2Fe^{2+}_{(aq)} = H_{2(q)} + 2Fe^{3+}_{(aq)}$ $3Zn_{(s)} + 6OH^{-}_{(aq)} + BrO^{-}_{3((aq)} + 3H_2O_{(l)} \implies 3Zn(OH)^{2-}_{4(aq)} + Br^{-}_{(aq)}$

- For each reaction, write the half-cell reactions taking place at; (a)
 - (i) the anode
 - (ii) the cathode
- (i) For each reaction, write the cell notation of the cell made by combining the (b) electrodes in each half-cell.

(ii)state what each symbol used in b(i) stands for.

- 22.(a) Define the following terms.
 - (i) Solubility product
 - (ii) Common ion effect

(b) The solubility product of copper(II) iodate is given by the expression.

$$Ksp = [Cu^{2+}][IO_3^-]^2$$

Describe an experiment that can be carried out to determine the solubility product of copper(II) iodate.

- (c) A saturated solution of copper(II) iodate has a concentration of 0.00833 moles of copper(II) iodate per litre at 25°C. Calculate the solubility product of copper(II) iodate at 25°C and indicate its units.
- (d) Determine the solubility of copper(II) iodate in a 0.02M copper(II) sulphate solution. State any assumptions you have made.
- (e) Explain how the solubility of copper(II) iodate would be affected if few drops of;
 - (i) Concentrated ammonia solution is added
 - (ii) Potassium Iodate solution was added
- 23.(a) Define the term standard electrode potential.
 - (b) With the aid of a diagram, briefly describe how the standard electrode potential of copper can be determined. (7 marks)
 - (c) The standard electrode potentials of copper and zinc are given below;

$$\begin{array}{cccc} Cu^{2+}_{(aq)} + 2e & \longrightarrow & Cu_{(s)} & E^{\theta} = +0.34V \\ Zn^{2+}_{(aq)} + 2e & \longrightarrow & Zn_{(s)} & E^{\theta} = -0.76V \end{array}$$

Write the cell notation for zinc/copper cell and calculate the e.m.f of the cell.

- (d) State two ways in which an electrolytic cell differs from an e.m.f cell.
- (e) A current of 2A was passed for 30 minutes through a cell containing dilute sulphuric acid and the hydrogen produced at the cathode collected. Calculate the volume of the hydrogen in cm³ that was produced at 23^oC and 100kPa.
- (f) State two applications of standard electrode potentials.

24.Electrode potentials for some half cells are given below.

Half cell	E^{θ}/V
$Fe^{2+}_{(aq)}, Fe^{3+}_{(aq)}/Pt_{(s)}$	-0.77
$Cr_{(aq)}^{3+}, Cr_2 O_{7(aq)}^{2-}, H_{(aq)}^+/Pt_{(s)}$	-1.33

- (a) Write the cell notation for the cell formed when the two half cells are connected.
- (b) Write;
 - (i) Equations for the half cell and reactions at the anode and cathode.
 - (ii) Equations for the overall cell reaction.
- (c) (i) Calculate the e.m.f of the cell
- (ii) State whether the reaction is feasible or not. Give a reason for your answer.
 25.(a) When a mixture of water and nitric acid is distilled, a constant boiling point mixture containing 68% nitric acid is obtained at 120°C. (The boiling points of pure water and nitric acid are 100°C and 83°C respectively)

- (i) Define the term Constant boiling mixture (azeotropic mixture).
- (ii) Draw a boiling point-composition diagram for the mixture of nitric acid and water.
- (iii) Explain the shape of your diagram.
- (iv) Describe what would happen if a mixture containing less than 60% nitric acid was fractionally distilled.

(b) A constant boiling mixture of nitric acid and water has density of 1.42gcm⁻³. Calculate the volume of the acid needed to prepare one litre of 2M nitric acid solution.

26.(a)Describe the spectrum of hydrogen. (use a diagram to illustrate)

- (b) Explain how the spectrum of hydrogen;
- (i) is formed.
- (ii) provides evidence for the existence of energy levels.

(c) The frequency of hydrogen at the point of ionization is 3.28×10^{15} Hz. Calculate the ionization energy of hydrogen. (Plank's constant = 6.6×10^{-34} Js)

27.(a) Sodium hydroxide solution was added to 25cm³ of 0.1M ethanoic acid and the PH of the solution was measured at intervals. The results are given in the table below.

Volume	of	0	4	8	12	16	20	22	22.5	23	24	28
NaOH(cm ³)												
		2.8	3.5	4	4.5	5.1	5.8	7	9	10.5	11.4	12.3
pH of mixtur	e											

i) Plot a graph of PH against volume of Sodium hydroxide.

- ii) Explain the shape of the graph.
- iii) Determine the PH at the end point.
- iv) Calculate the molar concentration of sodium hydroxide.
- (b) i) Calculate the molarity of sodium ethanoate at the end point.
- ii) Determine the hydrolysis constant for sodium ethanoate.

28.(a) Define the term relative atomic mass.

(b) Explain how the relative atomic mass can be determined can be determined by a mass spectrometer.

(c) The mass spectrum of an element A contained four lines at mass/charge of 204, 206, 207 and 208 with detector currents (mA) of 0.16, 2.72, 2.50 and 5.92 respectively. Calculate;

- i) the relative abundance of the different isotopes in the sample of element A.
- ii) the relative atomic mass of A.
- 29.(a) State what is meant by the following terms "order of reaction" and "half life of a reaction".

Time (minutes)	2.0	4.0	7.0	10.0	14.0	20.0
concentration of B (moll ⁻¹) [B]	0.820	0.67	0.49	0.372	0.24	0.141

(b) A compound B shows the concentration of B at various times.

Draw a graph of log10[B] against time.

- (c) Using the graph, determine the;
- i) Order of the reaction
- ii) Rate constant for the reaction
- iii) Half-life for the reaction.

30.(a) What is meant by steam distillation.

(b) (i) State three properties of a substance that enable it to be purified by steam distillation.

(ii) Explain how the properties you have stated in b(i) enable the substance to be purified by steam distillation.

- (iii) State two advantages of isolating substances by steam distillation.
- (c) The vapour pressure of water VP_{H20} and that of substance A (VP_A) at different temperatures are given in the table below.

Temperature (°C)	20	40	60	80	100
VP _{H20} (atm)	0.22	0.26	0.30	0.35	0.39
VP _A (atm)	0.35	0.42	0.49	0.56	0.63

- i) On the same axes, plot graphs of vapour pressure against temperature for water and substance A.
- When substance A was distilled in steam at 1atm pressure the temperature of distillation was 97°C and the distillate obtained contained 4.3g of substance A and 1.1g of water using your graph in c(i). Calculate the relative molecular mass of substance A.
- 31. (a) The molar conductivity of sodium hydroxide solutions of different concentrations are shown in the table below.

Concentration/ moldm ⁻³	0.01	0.04	0.09	0.16	0.25	0.36
Molar conductivity, \wedge $\Omega^{ extsf{-1}} extsf{cm}^2 extsf{mol}^{ extsf{-1}}$	238	230	224	217	210	202

- i) Draw a graph of molar conductivity against square root of concentration.
- ii) Explain the shape of the graph.
- iii) Determine the value of molar conductivity at infinite dilution of sodium hydroxide and indicate its units.

Using the same conductivity cell, the resistance of a 0.1M Potassium Chloride solution and 0.1M bromoethanoic acid solution were found to be 24.96 and 66.50 Ohms respectively at 25°C when determined using the same conductivity cell. [The Conductivity of Potassium Chloride at 25°C is 0.01164 Ω^{-1} cm² mol⁻¹ and the molar conductivity of bromoethanoic acid at infinite dilution is 389 Ω^{-1} cm²mol⁻¹]

i) Calculate the cell constant.

- ii) Calculate the molar conductivity of the 0.1M bromoethanoic acid.
- Determine the pH of 0.1M bromoethanoic acid. iii)
- 32. (a) The table below shows the result of partitioning aminoethane between trichloromethane and 0.1M Copper(II) Sulphate solution.

[CH3NH2 (0.1M CuSO4)]	0.87	1.10	1.33	1.57	1.80
[CH ₃ NH ₂ (CHCL ₃)]	0.02	0.03	0.04	0.05	0.06

- Plot a graph of [CH₃NH₂(0.1M CuSO₄)] versus [CH₃NH₂(CHCL₃)]
 - Determine the number of moles of aminoethane that has formed a complex with
 - (b) Write the equation for the reaction between copper(II) ions and aminoethane.
- 33.a) Describe how the solubility product of Magnesium hydroxide in water can be

 [[CH3NH2 (CHCL3)]]

 i)
 Plot a graph of [CHii)

 ii)
 Determine the num copper(II) ion.

 (b)
 Write the equal 33.a)

 33.a)
 Describe how the determined.

 b) (i)
 A saturated sole magnesium hydroxide product Ksp of Magne (ii)

 Solid Magnesium hydroxide until equilibrium was a Calculate the amount of the Periodic Table.

 (a)
 Describe how the dilute hydrochloric action (c)

 (b)
 Discuss the read (i)

 (i)
 dry air

 (c)
 Describe how be dilute hydrochloric action (d)

 Describe how c
 35. The atomic numbers a periodic table are sho

 Element
 Na

 b) (i) A saturated solution of magnesium hydroxide in water contains 1.44x10⁻⁴ mol of magnesium hydroxide per litre of sodium at 25°C. Calculate the value of solubility product Ksp of Magnesium hydroxide at $25^{\circ}C$.

(ii) Solid Magnesium hydroxide was shaken with a O.1M solution of Magnesium hydroxide until equilibrium was attained at $25^{\circ}C$.

Calculate the amount of magnesium hydroxide in grams per litre that was precipitated.

- 34. Beryllium , magnesium , calcium , strontium and barium are the elements of group(II) of the Periodic Table.
 - Describe how the electropositivity of the elements varies down the group.
 - Discuss the reaction of the elements with
 - - nitric acid (ii)
 - Describe how beryllium carbide and calcium carbide react with
 - dilute hydrochloric acid
 - Describe how cement is manufactured.
- 35. The atomic numbers and melting points of the oxides of elements of periodic (iii) of the periodic table are shown in the table below.

Element	Na	Mg	AI	Si	Р	5	CI
Atomic No.	11	12	13	14	15	16	17
Oxide	Na2O	MgO	Al2O3	SiO2	P ₄ O ₁₀	<i>SO</i> ₃	Cl2O7
Mpt	1275	2827	2007	1607	560	30	-91

(i) Plot a graph of melting points of the oxides against the atomic numbers of the (a) elements.

(ii) Explain the shape of the graph you have drawn in a(i) above.

- State the condition(s) and write equation to show the reactions between (b)
 - Water and (i)

-Na2O

-C1207 -MgO

- Sodium hydroxide and (ii) -A12O3 $-SiO_2$ $-P_{4}O_{10}$
- 36. The boiling points of some chlorides of period 3 elements of the periodic table are shown below.

		Form	nula of	chlorides								
		• • • • •			NaCl	MgCl₂	Al ₂ Cl ₆	SiCl ₄				
Do		Boili	ng poir	nt (°C)	1465	1418	423	57				
wnl	I	(a)	State	e the trend in the	boiling point	s of chloride	es.	<u> </u>				
Da		(b)	Explo	ain your answer in ((a) above.							
lec	37.State what would be observed and write equation(s) for the reaction(s)											
-	place when to the solution of cobalt(II) chloride is added;											
O	(a) Concentrated ammonia solution.											
۲ ۲		(b) Concentrated hydrochloric acid.										
¥		(c)	Aque	ous sodium hydrox	ide dropwise	e until in exc	ess.					
.m	38.	Chron	, nium	manganese , coppe	r and zinc ar	re d-block	elements i	n the Period				
- He		(a)	(i) ,	What is meant by	y the term d	- block elei	nent?					
ğ		. ,	(ii)	Write the electr	, ronic confiau	ration of th	ne elements	. (Atomic r				
z h	romi	ium r	nanaai	nese, copper and z	inc are 24.2	5. 29 and 30) respective	elv).				
e.c		(b)	Zinc	is a d- block eleme	nt but it is i	not a typical	transition	element.				
B		~ /	State	e two properties in	which zinc	shows						
, Y			(i)	similarity to the	rest of d-b	lock element	s					
2			(ii)	differences from	the rest of	the d- bloc	- k elements					
a		(c)	Desci	ribe how zinc is ex	tracted from	m zinc blend	0					
þ		(d)	Fynlo	in the following of	servations		0.					
¥		(u)		when zinc metal u	was added to	concentrat	ed codium					
nlo		معامدها	را) سنام م		id diagolyse							
nyaroxide solution, sliver solid dissolves with effervescence of a colour												
fo	iouri	ess so		i is tormea.	r .			1.1.1				
ore			(ii) when few drops of concentrated sodium carbonate solution									

- 37. State what would be observed and write equation(s) for the reaction(s) that will take
- 38.Chromium , manganese , copper and zinc are d block elements in the Periodic Table.

Write the electronic configuration of the elements. (Atomic numbers of

- Zinc is a d-block element but it is not a typical transition element.

hydroxide solution , silver solid dissolves with effervescence of a colourless gas and a

were added to aqueous chromium(III) sulphate solution, grey green precipitate was

(ii) when few drops of concentrated sodi were added to aqueous chromium(III) sulphate s formed and bubbled of a colourless gas were produced. (iii) When a hydrogen peroxide solution solution potassium dichromate and p formed in the organic layer. When a hydrogen peroxide solution was added to a mixture of acidified solution potassium dichromate and pentan-1-ol, a deep blue solution was formed in the organic layer.

(d) State what would be observed and write equation for the reaction when

- (i) barium chloride solution was added to potassium chromate solution.
- dilute sulphuric acid was added to potassium manganate(VI) solution. (ii)
- 39.(a) Describe one general method for the preparing the halogens (excluding fluorine) in the laboratory.
 - (b) Discuss the reactivity of fluorine, chlorine, bromine and iodine with;
 - (i) Water
 - (ii) Aqueous sodium hydroxide solution

40.(a) State four properties in which fluorine differs from other elements of group(VII) of the periodic table.

(b) State three reasons why fluorine is more reactive than the other elements in the periodic table

- (c) Write equation for the reaction between hydrofluoric acid and silicon dioxide.
- 41. The boiling points of hydrides of group(VII) elements are given in the table below.

Compound	HF	HCI	HBr	HI
Boiling point (°C)	+19.9	-85.0	-66.7	-35.4

- Explain the trend in the boiling points of the hydrides
- Giving reasons, suggest the trend in the acid strength of the hydrides.
- Using equations where possible explain what happens when concentrated sulphuric acid is mixed with each of the hydrides.
- (i) Arrange the following compounds in their order of increasing acid strength HClO₃, HClO₂, HClO

(ii) Explain your answer in d(i)

- 42. Discuss the reactivity of group(IV) elements (Carbon, silicon, Germanium, Tin and lead) of the periodic table with

 - Concentrated acids.
 - Sodium hydroxide
 - Dilute acids
- Comp Boilin Boilin (a) Explain th (b) Giving rea (c) Using equ acid is mi (d) (i) Arrang HClO₃, HC (ii) Explai 42.Discuss the read of the periodic the (a) Water (b) Concentro (c) Sodium hy (d) Dilute acid 43.Berryllium, Magr group (II) of the a) Describe givin i) water ii) sulphuric acid (b) Giving reason (i) hydroxides 44.Explain the follow 43.Berryllium, Magnesium, Calcium and Barium are some of the elements that belong to group (II) of the periodic table.
 - a) Describe giving conditions for the reactions of the elements with:

 - ii) sulphuric acid [illustrate your answers with the equations]
 - (b) Giving reasons, state how the solubilities of;

(ii) sulphates , vary down the group.

44.Explain the following observations

Propene undergoes electrophilic addition where propanone undergoes nucleophilic (a) addition.

Hydrogen bromide can not be prepared in the laboratory using potassium (b) bromide and concentrated sulphuric acid however hydrogen chloride can efficiently be prepared using potassium chloride and concentrated sulphuric acid.

Iodobenzene is more reactive than chlorobenzene towards nucleophiles but much (c) less reactive than iodoethane.

When potassium iodide solution was added to lead(II) nitrate solution drop-wise until in (d) excess, a yellow precipitate is formed that dissolves to form a yellow solution. However

when the same reagent is trewated with copper(II) nitrate solution, a white precipitate in a brown solution was formed.

45.Explain the following observations

(a) Phenylamine is a weaker base than ethylamine

(b) Phenol is a stronger acid than Phenylmethanol

(c) Copper(I) oxide reacts with dilute sulphuric acid to give a pale blue solution and a brown solid is deposited.

(d) when hydrogen sulphide gas is bubbled through aqueous solution of lead(II) nitrate, a black precipitate is formed but no precipitate is formed when the same gas is bubbled through acidified lead(II) nitrate solution.

(e) Aluminium fluoride is more soluble in water than in ethanol whereas aluminium bromide is more soluble in ethanol than in water.

(f) Water boils at $100^{\circ}C$ and methyl benzene boils at $111^{\circ}C$ at 101.3 kPa. The boiling point of a mixture of water and methyl benzene is $96^{\circ}C$.

CHEMISTRY PRACTICAL

QUESTION ONE

Downloaded from

Sou are provided with following;

FA1, which is a solution containing 13.44gdm⁻³ of thiosulphate ions.

FA2, which is a solution of manganate (VII) ions of unknown concentration.

SOLID T, which is a metal sulphite,

30% potassium iodide solution

%.0M sulphuric acid solution

 $\frac{5}{7}$ ou are required to determine the;

(i) Concentration of manganate(VII) ions in FA2 in moldm⁻³

(ii) Percentage purity of metal sulphite

6 (ii) Theory

Acidic manganate (VII) ions oxidize iodide ions to liberate iodine according to the following equation.

 $2MnO_4^-(aq) + 16H^+(aq) + 10I^-(aq) \longrightarrow 2Mn^{2+}(aq) + 5I_2(aq) + 8H_2O(I)$ The liberated iodine reacts with thiosulphate ions according to the following equation $2L_2(aq) + 2S_2O_3^{2-}(aq) \longrightarrow S_4O_6^{2-}(aq) + 2I^-(aq)$

Manganate (VII) ions also react with sulphite ions in acid medium according to the following

¹²2MnO₄⁻ (aq) + 5SO₃²⁻ (aq) +6H⁺ (aq) → 2Mn²⁺ (aq) + 5SO₄²⁻ (aq) +3H₂O(I) PART I

Procedure

Using a measuring cylinder transfer 65cm³ of **FA2** into a clean 250cm³ glass beaker, followed by 35cm³ distilled water, label the resultant solution **FA3**

Pipette 25.0cm³ (or 20.0cm³) of **FA3** into a conical flask. Add 15cm³ of 2M sulphuric acid followed by 15cm³ of 10% potassium iodide solution.

Titrate the iodine liberated with **FA1** from the burette until the solution is pale-yellow. Add 4 - 5 drops of starch indictor and continue the titration until the end point. Repeat the titration until you obtain consistent results.

Record your results in table I below.						
Results						
Volume of pipette used =		cm ³				
Final burette reading (cm ³)						
Initial burette reading (cm ³)						
Volume of FA1 used (cm ³)				_		
		I				
a)(i)State the volumes of FA1 used t	for calculating o	iverage				
(ii)Calculate the average volume	of FA1	iver age.				
Questions						
b)Calculate the number of moles of						
Ti) Todine that reacted with thiosult	, hate ions in FA	1(5 = 32 0 =	16)			
ii)Managanate (VTT) ions in 100cm ³ or	f FA 2	1 (0 = 01, 0 =	-0)			
b)Determine the concentration of m	anaanate(VTT)i	ons in FA2 in mo	ldm ⁻³			
PART TT			, and the second se			
Procedure						
Weigh accurately 1 20g of M into a h	eaker Addalit	tle water and sh	nake to dissolve T	ransfer		
the resultant solution into a 250 cm ³	volumetric flas	and ton un with	n distilled water u	n to the		
mark Label this solution FA4	volumente rius			p to me		
mark. Ladel this solution rA4.						
Chesuits						
Mass of weighing bottle + M =g						
ZNUSS OF WEIGHTING DOTTIE GIONE						
Procedure						
Pinette 20.0 or 25.0 cm ³ of FA4 into	a conical flask	Add an equal vol	lume of 2M sulphi	iric acid		
and titrate the mixture with FA2 from the burette Reneat the titration two more times and						
record your results in table 2 below						
Volume of ninette used		cm ³				
Final burette readings (cm ³)						
Tritial burgette readings (cm ³)						
Valume of 542 used (am ³)						
(a)(:)Titre velues used to seleviste the						
(a)(1) I ITTE VALUES USED TO CALCULATE THE AVERAGE VOLUME OF FA2						
(II) calculate the average volume of FA2						
Questions						
(a) calculate the, (i) males concentration of culphite is	n in EAA					
(1) moral concentration of sulprite ion in FA4 (b)Determine the:						
(i)mass of nure metal sulphite (Molar mass of metal sulphite = 1250)						
(ii) Percentage nurity of the metal culphite						
(11) Percentage purity of the metal sulphite						

Question two

You are provided with substance, **Y**, which contains **two** cations and **two** anions. You are required to carry out the following tests on **L** to identify the cations and anions in it. Identify any gas(es) evolved. Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a)Heat two spatula end-ful of Y in a		
dry test tube strongly until no		
further change.		
₽		
(b)To two spatula end-ful of Y add		
\$ 3-4 drops of concentrated sulphuric		
Facid and warm		
(c)To three spatula end-ful of Y in a		
test tube add about 10cm ³ of		
distilled water shake strongly to		
dissolve you may warm		
$\frac{1}{6}$ (d). To 2cm ³ of the solution in		
part(c) add 2cm ³ of ethanol and		
5drops of concentrated sulphuric		
acid and boil		
$\frac{1}{2}$ (e) Use 2cm ³ of the solution in		
<pre>\$ part(c) </pre>		
to carry out a test of your own to		
confirm one of the anion in solution		
of Y		
test		
(e) To the remaining solution add		
dilute sodium hydroxide solution		
drop-wise until no further change.		
Filter and keep both the filtrate and		
fresidue		
(f). To the filtrate from part (e) add		
dilute sulphuric acid drop wise until		
the solution is just acidic.		
Divide the resultants into five parts.		
(i)To the first part of acidified		
solution add 2-3 drops of barium		
nitrate solution		

(ii)To the second part of acidified	
solution add 2-3 drops of silver	
nitrate solution	
(iii)To the third part of acidified	
solution add little bleaching powder	
followed by 1cm ³ of carbon	
tetrachloride and shake strongly	
allow to stand	
(iv)To the fourth part of acidified	
solution add dilute ammonia solution	
drop-wise until in excess	
(d)(iii). Use the fifth part of	
acidified filtrate to carry out a test	
of your own choice to confirm the	
cation in the filtrate	
Test	
(g). Dissolve the residue from part	
(e) in minimum amount of sulphuric	
acid.	
Divide the resultant solution into	
three parts.	
(i). To the first part, 2-3 drops add	
potassium hexacyanoferrate(II)	
solution followed by	
dilute ammonia solution.	
(ii). To the second part, add dilute	
ammonia solution drop-wise until in	
(III) Use the third part of to carry	
out a test of your own choice to	
contirm the second cations in Y	

th) Identify the (i) Cations in Y

(ii) Anions in Y .

QUESTION THREE

You are provided with an organic substance, O. You are required to determine the nature of O. Carry out the following tests on O and record your observation and deductions in table below. (20marks)

TESTS	OBSERVATIONS	DEDUCTIONS
(a)Burn a small amount of O on a spatula end		
(b)To about 1cm ³ of O add 3cm ³ of distilled water test the mixture with litmus paper		
(c)To about 1cm ³ of O add 2cm ³ of sodium hydrogen carbonate solution		
(d)To about 1cm ³ of O add 2 - 3 drops of neutral iron (III) chloride solution		
(e)To about 1cm ³ of O , add 2 - 3 drops of acidified potassium manganate (VII) and warm		
(f)To about 1cm ³ of O , add 2-3 drops of 2,4-dinitrophenylhydrazine solution		
(g)To about 1cm ³ of O , add 2-3 drops of saturated solution of sodium hydrogen sulphite and shake strongly		
(h)To about 2cm ³ of silver nitrate solution in a clean test tube add 2drops of sodium hydroxide solution followed by ammonia solution until the		

precipitate just dissolves heat the mixture to the hot mixture add about 1cm ³ of O and shake	
(i)To about 1cm ³ of O , add 2-3 drops Fehling solution and heat	