P510/2 PHYSICS PAPER 2 2½ Hours August 2023

JINJA JOINT EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

MOCK EXAMINATIONS, AUGUST 2023

PHYSICS

PAPER 2

2 hours 30 minutes

INSTRUCTIONS TO THE CANDIDATES:

Answer only five questions, taking at least one question from each of the sections A, B, C and D, but not more than one question should be chosen from either section A or section B.

Any additional question(s) answered will not be marked.

Mathematical tables and squared paper will be provided.

Non-programmable Silent Scientific Calculators may be used.

Where necessary assume the following constants:

Acceleration due to gravity, g	medale de T alante	9.81 m s - 2
Speed of light in Vacuum, c	= white	$3.00 \times 10^{8} \text{m s}^{-1}$
Speed of sound in air,	mir su T usus	340 m s-1
Electronic charge, e	, delibri d ∓ no 5.0	$1.60 \times 10^{-19} C$
Electronic mass, me	Min La Flat	$9.11 \times 10^{-31} \text{kg}$
Permeability of free space, μο		$4.0\pi \times 10^{-7} H m^{-1}$
Permittivity of free space, ${m \mathcal{E}}_0$	n olanda 🛖 a 🔠	$8.85 \times 10^{-12} Fm^{-1}$
The Constant, $\frac{1}{4\pi\epsilon_o}$	=	9.00 × 10 ° F - 1 m

© 2023 Jinja Joint Examinations Board

Turn Over

SECTION A

- (a) (i) A ray of light from a fixed ray box is directed at an angle onto a plane mirror. The mirror is then rotated through an angle θ. Show with the aid of a ray diagram that the reflected ray turns through an angle 2θ. (3 marks)
 - (ii) Describe the structure and mode of operation of an optical lever galvanometer. (4 marks)
 - (b) (i) Define focal length of a convex lens. (1 mark)
 - (ii) Derive an expression for the lens formula, $\frac{1}{u} + \frac{1}{u} = \frac{1}{f}$ where, u, v and f are object distance, image distance and focal length respectively of the lens. (4 marks)
 - (c) Figure 1 shows a concave mirror M, of focal length 10.0 cm arranged coaxially with a convex lens L of focal length 8.0 cm placed a distance of 20.0 cm apart. A real point object O is placed 15.0 cm in front of the mirror M.

- (i) Determine the position and nature of the final image formed first by reflection in M then refraction by L. (4 marks)
- (ii) Determine the magnification of the final image. (2 marks)
- (iii) Draw a ray diagram to show the formation of the final image. (2 marks)
- 2. (a) (i) Define the term radius of curvature of a concave mirror. (1 mark)

 (ii) Describe an experiment to determine the refractive index of a liquid
 - (ii) Describe an experiment to determine the refractive index of a liquid using a concave mirror. (5 marks)
 - (b) An optical clamped above a concave mirror containing a liquid L₁ of refractive index 1.35 and thickness 0.2 cm coincides with its own image at a height of 15.0 cm above the liquid surface. When liquid L₁ is replaced with liquid L₂ of the same thickness, the pin coincides with its own image at a height of 18.0 cm above liquid surface. Determine the,
 - (i) radius of curvature of the mirror (3 marks)
 - (ii) refractive index of liquid L_2 . (2 marks)

© 2023 Jinja Joint Examinations Board Turn Over

- (d)(i) What is the effect of reducing the distance between the slits on the fringe separation? (1 mark)
 - (ii) State three conditions necessary for the fringes to be observed on a screen in the Young's double slit experiment. (3 marks)

SECTION C

- 5. (a) Define the following terms as applied to magnetism: -
 - Angle of dip.

(1 mark)

(ii) Magnetic meridian,

(1 mark)

- (b) (i) Describe how a search coil of known geometry can be used to measure the angle of dip of the earth's magnetic field. (6 marks)
 - (ii) The horizontal and vertical components of the earth's magnetic field at a certain location are $2.52.50 \times 10^{-3} T$ and $4.33 \times 10^{-3} T$ respectively. Determine the resultant magnetic field and the angle of dip. (4 marks
- (c) A plane circular coil earrying a current in a vacuum, has N turns of the wire each of mean radius R. Given that the magnetic flux density in tesla at its centre is $\frac{\pi}{2}$, show that the current flowing through the coil is $\frac{\pi R}{\mu o N}$ amperes.

(3 marks)

(d) Figure 2 shows two straight and parallel wires Q and R placed 5.0 cm apart in air along the x - axis and carrying currents of 4.0A and 3.0A respectively out and into the x - y plane as shown.

Calculate the magnitude of the resultant magnetic flux density at a point P,

located 4.0 cm from Q and 3.0 cm from R.

(5 marks)

© 2023 Jinja Joint Examinations Board

Tuen Over

	6. (a)	 Define the term, electromagnetic induction. 	(1 mark)		
		(ii) State the laws of electromagnetic induction.	(2 marks)		
Downloaded from www.mutoonline.com visit the website for more PAST P	(b)	(i) Derive an expression for the e.m.f. induced across a straight	conductor of		
	(0)	length L being moved perpendicularly across a uniform magnetic fi			
		density, B at a constant velocity, V.	(4 marks)		
<u>م</u>		(ii) A glider aircraft of wing span 40 m is moving horizontally at			
<u>o</u>		250 ms ⁻¹ in a plane where the angle of dip is 30°. If the e.m.			
5 ≶		across the tips of the wings is 10 mV.	I. madeed		
		Find the value of the Earth's magnetic flux density and state	the sign of		
3		chargeon each wing.	(4 marks)		
	(6)				
	(c)				
<u></u>	metal disc, (5 marks)				
מי	(d) A transformer inside a portable CD player has 500 turns in the primary coil. It				
3		supplies an e.m.f. of amplitude 6.8 V when plugged to the a.c. mains of amplitude			
<u><</u> .		1.70 V.			
+		(i) How many turns does the secondary coil have?	(2 marks)		
		(ii) If the amplitude of the current drawn by the CD player has an	mplitude of		
<u>₹</u>		1.50 A, what is the amplitude of the current in the primary?	(2 marks)		
S					
Ð	7. (a)	(i) Define the term root mean square current.	(1 mark)		
		(ii) Derive an expression for the average power dissipated in a re	sistor of		
		resistance R when alternating current $I = I_0 \sin 2\pi f t$ ampe	res flows		
D D		through it.	(3 marks)		
SA	(h)	(i) Darive an expression for reactance Vo of a canacitor of cana	citance C		
	(b)	(i) Derive an expression for reactance X_C of a capacitor of capacitance, C connected across an alternating voltage $V = V_0 \cos 2\pi f t$ volts (4 marks)			
P					
		(ii) Sketch using the same axes the variation of applied voltage a			
<u>2</u>		flowing through the capacitor, with time.	(2 marks)		
<u></u>	(c)	(i) Describe the structure and mode of operation of a repulsive t	ype of		
5		moving iron ammeter.	(5 marks)		
P T		(ii) Outline three advantages of the meter in (i) above over a move	ving coil		
		ammeter.	(3 marks)		
Cat					
<u>o</u>	(d)				
3		of copper wire connected to a large battery via a switch, jumps off t			
<u>ter</u>		later falls back when the switch is closed.	(2 marks)		
APERs and other education materials					
••	© 2023 Jinja Joint Examinations Board Turn Over				
		•••••			

SECTION D

- 8. (a) (i) Define the term electric field intensity and state is SI Unit. (2 marks)
 - (ii) Derive an expression for the electric field intensity at a point due to a charge +Q.(3 marks)
 - (b) (i) What is an equipotential surface?

(3 marks)

- (ii) Explain why electric field lines are normal to the surface of a charged metal conductor. (4 marks)
- (c) Three-point charges of $+2.5 \mu C$, $-5.0 \mu C$ and $+3.0 \mu C$ and are placed at points A, B, and C as shown in figure 2, with point P located 3.0 cm from point C along the x axis, while BC = 2.0 cm and AC = 4.0 cm.

Fig. 2

Determine the resultant electric field intensity at point P. (5 marks)

- (d) Explain how lightening is created in the earth's atmosphere. (3 marks)
- 9. (a) (i) What is a capacitor?

(2 marks)

(ii) Give three industrial uses of capacitors.

(3 marks)

- (b) Derive an expression for the effective capacitance, C of three capacitors of capacitances C₁, C₂ and C₃ arranged in series all of which are connected across a battery of e.m.f, V. (4 marks)
- (c) Six parallel plate capacitors of 1 μF , 2 μF , 3 μF , 6 μF , 8 μF and 15 μF are all connected as shown in figure 3 across a 12 V battery.

Turn Over

Determine the;

(i) Effective capacitance of the network. (4 marks)
 (ii) Charge stored in the whole system. (2 marks)

- (d) Describe how a calibrated gold leaf electroscope can be used to investigate the effect of increasing the distance of separation between the plates of a charged capacitor on its capacitance. (5 marks)
- (a) (i) Define temperature coefficient of resistance of a material. (1 mark)

 (ii) Describe an experiment to measure temperature coefficient of

(ii) Describe an experiment to measure temperature coefficient of resistance of copper. (6 marks)

- (b) A variable resistance, R, is connected across a battery of e.m.f. E and internal resistance, r. Derive an expression for the;
 - (i) Efficiency of the circuit. (3 marks)
 - (ii) Maximum power output of the circuit. (4 marks)
 - (iii) Sketch using the same axes graphs of power and efficiency against resistance. (2 marks)
- (c) How can a galvanometer having a coil of resistance 2 Ω and full-scale deflection of 5 mA be converted into a voltmeter having a range of (0-3 V)? (4 marks)

© 2023 Jinja Joint Examinations Board End

