HISTOLOGY/TISSUES

Histology is the study of tissues. A tissue is a group of similar physically linked cells organized into a structural and functional unit. It is a group of cells of similar structure organized for carrying out a particular function(s).

Caracteristics of tissues

Cells of a tissue are physically linked.

> The cells of a tissue may be interspersed with intercellular substances.

>=A tissue may comprise one or more types of cells.

> A tissue is specialized to perform a particular function(s).

ANIMAL TISSUES

Exply in development, the cells of the growing embryo differentiate into three fundamental embryonic tizeues called germ layers.

• Ectoderm which forms the outer layer of the skin and the nervous system.

• Mesoderm which forms muscles, connective tissues, skeleton, kidneys and circulatory and reproductive organs.

• DEndoderm which forms the lining of the respiratory tract and urinary bladder. It also forms the glands associated with the guts and respiratory tract.

The germ layers then differentiate into different cell types and tissues that are characteristic of the vertebrate's body. Tissues are joined to each other by proteins. The point of connection between two cells is junction.

In adult vertebrates, the **principle kinds** of tissues include; **epithelial tissue**, **connective tissue**, **ngscular tissue**, nervous **tissue** and **reproductive tissue** (associated with ovaries and testes; concerned with production of gametes: eggs and sperm respectively).

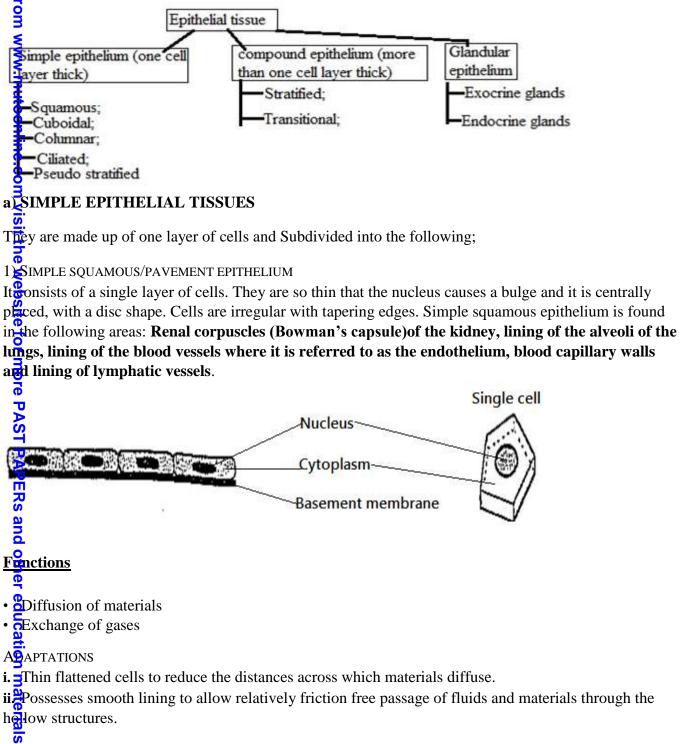
A CEPITHELIAL TISSUE

This is a collection of closely packed single and multilayered compound sheets of cells covering the external and internal surface of the body of an organism. At the bottom epithelial cells rest on a basement membrane. Epithelial tissue protects the underlying structures from injury. In some situations, the free surface of epithelium is highly differentiated may be absorptive, secretory or excretory.

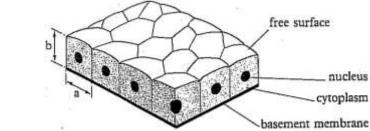
CHARACTERISTICS OF EPITHELIAL TISSUE

1. Epithelial tissue consists of **tightly packed cells** that are firmly attached to each other with little intercellular material between them. Epithelial cells are held firmly together by small amounts of cabohydrate cementing substances and by special intercellular junctions between the cells.

2. The bottom of epithelial cells rest on a **basement membrane** composed of a network of fibres which include collagen. The portion of epithelial cells attached to the basement membrane is called the **basal** surface, the opposite end facing the external environment or the lumen of the body cavity is called the apical surface/free surface.


3. There are **no blood vessels** in the epithelial tissues hence the tissue lacks vascularity. As the epithelial can be are not supplied with blood vessels, **they rely on diffusion** of nutrients and oxygen from lymph

vessels which run through nearby intercellular spaces. However, nerve endings may occur in the epithelium.


4. <u>Regeneration</u>- Epithelial cells have a **high regeneration capacity** due to rapid cell division. This gives the epithelial tissue quick recovery after any injury or abrasions.

ASSIFICATION OF EPITHELIAL TISSUES

Expected the line of the second terms of the number of cells/layers and the shape of the individual cells.

2. SIMPLE CUBOIDAL EPITHELIUM

The cells are roughly cube shaped and possess a central spherical nucleus. The upper surface of cuboidal cells is either pentagonal or hexagonal in outline. It is the least specialized of all the epithelial tissues.

DSTRIBUTION

Downloaded

Example 2 Sector 2 Se

the nephrons of the kidney.

Lining of the salivary glands, sweat glands and thyroid glands

Lining of the retina

NB: The simple cuboidal epithelial tissue is non-secretary in the proximal convoluted tubule, distal convoluted tubule and pancreatic ducts.

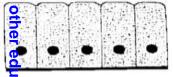
The functions include: Protection, excretion, absorption and secretion

ADAPTATIONS

i. Cells are tightly packed together with little intercellular spaces between them to offer protection from input y and infection.

ii Possess many Golgi bodies which perform functions of secretion of hormones and enzymes.

iii Some possess microvilli which increase the surface area for example reabsorption of materials from the renal fluids in the kidney tubules.


iv Cells have numerous mitochondria for energy production to be used in active reabsorption of materials e. from renal filtrate back into the bloodstream.

3. SIMPLE COLUMNAR EPITHELIUM

It is a single layer of column like narrow elongated cells at right angles to the basement membrane. Each compossesses a nucleus situated at the basal end and it is oval in shape. The epithelium is often interspersed with goblet cells. The free surface of each columnar cell has microvilli forming a brush border.

Blumnar

τ

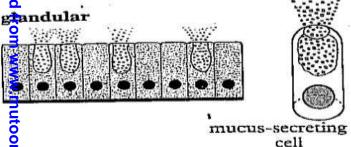
DETRIBUTION

 \sqrt{a} Lining of the stomach, small intestines, gall bladder, and kidney ducts.

 $\sqrt{2}$ Lining of the gastric glands, intestinal glands, mammary glands, thyroid glands, salivary glands.

The functions include: Secretion, protection, absorption and brush border increasing surface area by having microvilli at the cell free surface.

ADAPTATIONS


i) Possess fingerlike projections called microvilli which increase the surface area for absorption such as digested food in the intestines.

ii Possess mucus secreting cells which secrete mucus. The mucus protects the gastric walls from

highrochloric acid and digestive enzymes (pepsin and Rennin).

ii Mucus from goblet cells also lubricates the passage of food in the intestines.

II USTRATIION OF SECRETORY COLUMNAR/GLANDULAR EPITHELIUM

4 CILIATED EPITHELIUM

Calls of this tissue are usually columnar in shape but bear numerous cilia at their free surfaces. The cells are usually associated with mucus secreting goblet cells.

DESTRIBUTION

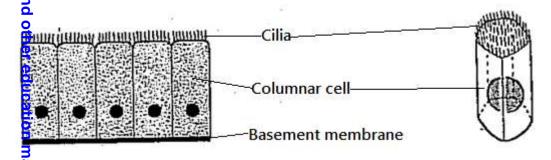
√ Lines the oviduct

✓ Ventricles of the brain, spinal canal

Respiratory passages (trachea, bronchi and bronchioles).

F*E***NCTIONS**

> Mucus protects lining and lubricates the passage of materials.

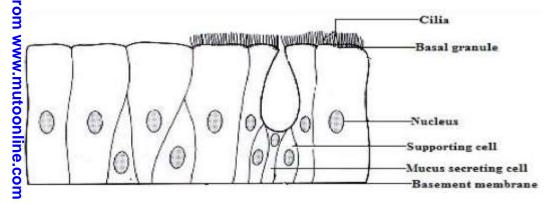

 \succ Cilia set up currents to move materials in a certain direction.

ADAPTATIONS

i) Interspersed with goblet cells which secrete mucus to protect the lining of the gut from enzyme and acidic action.

ii) Possess cilia which set up currents that move materials from one direction to another. iii) Possess

goolet cells which lubricate the passage. Illustration


5 SEUDOSTRATIFIED EPITHELIUM

T is is a simple epithelium since all cells rest on a basement membrane, but some do not reach the free surfaces. This gives an appearance of the epithelium to be on different levels and the nuclei at different

layers. Nevertheless, the epithelium is one layer of cells thick with each cell attached to the basement membrane.

Most cells are columnar, thus usually named pseudostratified columnar epithelium. Where the cilia appear at the free surface of respiratory passages (trachea, bronchi, bronchioles), it is called pseudo statified columnar ciliated epithelium.

Peudo stratified epithelium also lines the urinary tract and ducts of large glands (non-ciliated pseudo stratified).

BCOMPOUND EPITHELIAL TISSUES

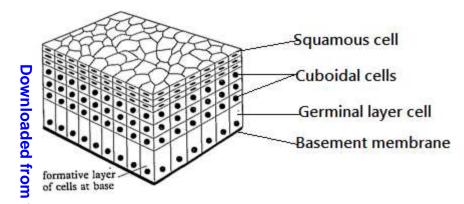
1.5 TRATIFIED EPITHELIA

How more than one layer of cells with only the bottom layer resting on the basement membrane. These certifies form the germinative layer and continue to divide by mitosis and push other areas outwards. They are primarily found in areas where the epithelium has protective functions.

AZSTRATIFIED SQUAMOUS EPITHELIUM

The cells first formed on the basement membrane are cuboidal in shape, but as they are pushed outwards the free surface of the tissue, they become flattened and these cells are called squamous. It is the thickest of all epithelia and its function is protection.

The cells of the surface layer may have keratin (cornified) or lack keratin (uncornified). Keratin is a together protective protein which prevents water loss, is resistant to friction and repels bacteria.


Non-keratinized stratified squamous epithelium lines wet surfaces subjected to abrasion such as lining of the mouth, Oesophagus, part of the epiglottis and vagina. Keratinized stratified squamous epithelium forms the epidermis of the skin.

BSTRATIFIED CUBOIDAL EPITHELIUM

This epithelium has several layers of epithelial cells but the surface layer of this epithelium is composed of cuboidal cells. It is found in the largest ducts of sweat glands, mammary glands, salivary glands and in patts of the male urethra. Its role is protection and provides strength.

CTSTRATIFIED COLUMNAR EPITHELIUM

This epithelium has several layers of epithelial cells but the surface layer of this epithelium is composed of columnar cells. It is very rare. It lines parts of the urethra, larger ducts of some glands, portion of the conjunctive of the eye. Its roles are protection and absorption.

2 TRANSITIONAL EPITHELIUM

This is a modified form of stratified epithelium. It comprises 3 to 4 layers of cells all of similar size and shape except at the free surface where they are more flattened. The cells do not slough off/flake off.

It is found in organs/structures which can expand like the bladder, girdles of women where they come best to normal after delivery, ureters and part of urethra. It allows for distension of the urinary organ.

Because the shape of the cells at the surface is transitory (changes depending on the degree of stretching of distending of the organ), this epithelium is called transitional. It will look like a stratified squamous epithelium if it is stretched or stratified cuboidal epithelium if it is unstretched.

ABAPTATIONS OF THE TRANSITIONAL EPITHELIUM TO ITS FUNCTION

i) By changing its shape, the transitional epithelium allows expansion of the organ such as the urinary badder. This increases the volume of the organ.

in Transitional epithelium is composed of many layers of cells making it impermeable to water from be odd to urine.

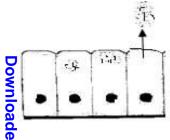
iii Due to its thickness, it prevents urine from escaping to the surrounding tissues.

CEGLANDULAR EPITHELIUM

It is formed by epithelial cells which are frequently interspersed with secretory cells e.g goblet cells or aggregates of glandular cells forming multicellular gland. There are two types of glands.

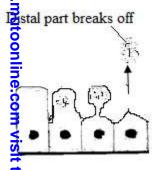
 \checkmark xocrine glands where the secretion is delivered to the free surface via ducts.

released and passed into the bloodstream (ductless glands).

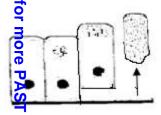

CASSIFICATION OF EXOCRINE GLANDS

Basing on the mode of secretion, the exocrine glands are of three types;

A MEROCRINE GLANDS


Secretions produced by cells are simply passed through the cell membrane at the cell free surface without loging any of its cytoplasm. The cell therefore remains intact. Examples include; goblet cells, pancreatic gends, sweat glands.

n materials

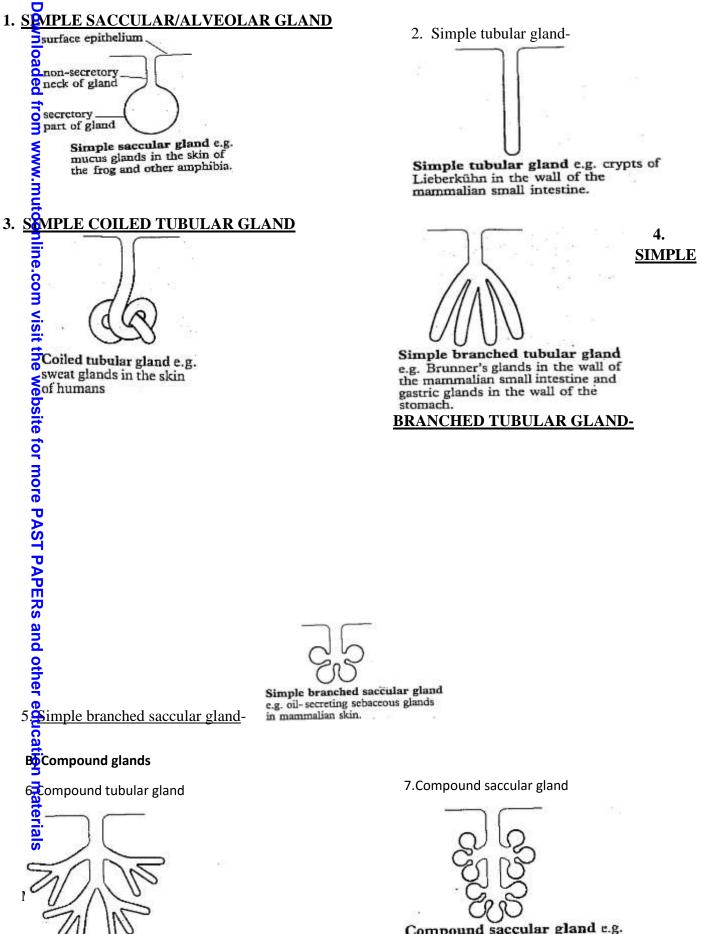

B**PAPOCRINE GLANDS**

Here, the glandular epithelia shed their secretion by the top part of the cell loaded with the secretion by aking away from the rest of the cell eg mammary glands. The cell loses part of the cytoplasm while receasing its secretion.

CHOLOCRINE GLANDS

In this case, the whole secretory cell disintegrates and the secretions are from the epithelium e.g the secretory glands of the mammalian skin. Secretion is formed by complete breakdown of cell.

Appeithelium containing goblet cells is called a mucus membrane.


Basing on shape of the secretory glands and nature of ducts.

If the duct is unbranched, the gland is said to be **Simple** and if the duct is branched it is said to be **Compound**.

Multicellular exocrine glands exist in various forms which include;

Agsimple Glands

ucation materials

Compound tubular glands e.g. salivary glands. Compound saccular gland e.g. the part of the pancreas which secretes digestive enzymes, and

FUNCTIONS OF THE EPITHELIAL TISSUE

Downloaded from wv

1. **Protection**; Epithelial tissue basically protects the underlying tissue from injuries by chemicals, pressure abrasion and infection.

- Several layers of the tough keratin in the surface epithelium (epidermis) forms an effective barrier to all agents that invade the body.
- \succ Melanin in the deeper layers of the skin prevents deep penetration of harmful ultraviolet rays.
- > Exaporation of sweat from skin surface cools the body.
- > Caliary action of the ciliary epithelium removes harmful substances thus preventing damage to tissues.
- 2. Secretion; A number of epithelial cells are modified to produce secretions such as mucus, hormones, enzymes etc.
- 3. Absorption and Excretion; The epithelial cells of the kidney tubules and sweat glands remove excessive and toxic metabolic wastes from the body thus helping the body in excretion.

Absorption: - Cuboidal and columnar epithelia are modified for absorption. Brush boarders –(microvillus) in the kidney and ileum increase surface area for absorption.

4. Exchange of materials and gases- Squamous epithelium is extremely thin and flattened promoting exchange of materials and gases by diffusion such as the alveoli of the lungs.

5. Seasory- epithelia bearing sensory cells and nerve endings are specialized to receive stimuli as in the skin ining of the tongue and retina of the eve.

6. Movement of materials/transport- Epithelia may be modified to aid movement of materials e.g Ciliated columnar epithelium lining the inside of the oviduct, ventricles of the brain, spinal canal and respiratory passages bears numerous cilia at their free surface. These are associated with mucus secreting goblet cells producing fluids in which the cilia beat up rhythmically setting up currents which move materials from one location to another.

7. **Reproduction** The epithelial lining of the gonads ie. Germinal epithelium of the ovary and seminiferous tubules of the testes undergoes meiosis to produce haploid secondary oocyte and sperm cells

B) CONNECTIVE TISSUES

Connective tissues are derived from the embryonic mesoderm. Types of connective tissues include;

Areolar tissue Dense fibrous t Adipose tissue Dense fibrous tissue

- 4. Skeletal tissue-bones and cartilage

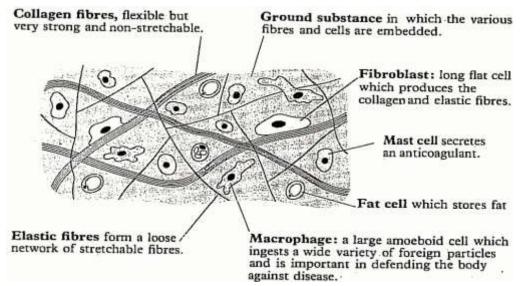
5. Haemopoitic tissue(blood)

Fungtions of connective tissues

- a) It pinds the various tissues together like the skin with muscles and muscles with bones.
- b) It is a packing tissue forming sheath like bags around the body organs.
- c) Are olar tissue protects the body against wounds and infections.
- d) Agipose tissue stores fats, and insulates the body against heat loss.
- e) Connective tissue is the major supportive tissue of the body, composed of bones and cartilage which
- provides the body with a supportive framework.
- f) Haemopoitic tissue produces blood.
- g) Lemphatic tissue builds body immunity by producing antibodies.
- h) Connective tissue separates the body organs, so that they do not interfere with each other's activities.
- i) Pretects blood vessels and organs where they enter or leave organs.

Consective tissues occur in different forms which are divided into two major classes

• **Connective tissue proper** which is further divided into loose and dense connective tissue.


• Special connective tissues which include; cartilage, bone and blood. Cartilage and bone form the skeletal tissue.

LOOSE CONNECTIVE TISSUES

The sinclude areolar, adipose and recticular connective tissues.

A) AREOLAR CONNECTIVE TISSUE

This is the most abundant type of connective tissue found all over the body beneath the skin, connecting organs together and filling spaces between adjacent tissues.

Areorar connective tissue consists of a gelatinous glycoprotein matrix or ground substance containing two types of protein fibres and four types of cells. The protein fibres include;

I) COLLAGEN FIBRES

They are white fibres forming wavy bundles running parallel to each other and are not branched. They are flexible but inelastic (non-stretchable)

Malavy H.

re PAST PAPERs and other educat

II) ELASTIC FIBRES

The pare thin yellow fibres which are highly branched forming a network in the matrix. They are flexible and eastic. The main function of fibres is to give the areolar tissue its strength and toughness. It also allows the test to be flexible and elastic.

The gells within the matrix include;

A) FBROBLASTS

These are flattened and spindle like shaped cells containing an oval nucleus. They are generally closely appled to fibres but migrate to the wounded tissue to secrete more fibres in that region that effectively seal off the injured area. The function of fibroblasts is to secrete fibres.

B) MACROPHAGES/HISTOCYTES

The are large cells capable of amoeboid movement for which reason; they are referred to as amoeboid cells. Their function is to engulf/ingest bacteria and other foreign particles. They are generally mobile but at times they wonder to areas of bacterial invasion. Therefore, they serve to defend the body against diseases.

C) MAST CELLS

The sare amoeboid cells which are oval shaped and contain granular cytoplasm. They are found in aburgance close to blood vessels. They have the following functions

- \checkmark S $\overline{\mathbf{s}}$ retion of the matrix.
- \checkmark S secretion of an anticoagulant, heparin.
- \checkmark They secrete **histamine**, a substance attributed to the effects of allergy.
- d) Fat cells

τ

Ž

They are mainly filled by lipid droplets. The cytoplasm and nucleus of a fat cell are confined to the margins of the periphery.

Acolar connective tissue is found in the skin and in most internal organs of vertebrates where it allows the organs to expand. It also forms the protective covering of muscles, blood vessels and verves.

FUNCTIONS OF THE AREOLAR CONNECTIVE TISSUE

- 1. Buds tissues and organs together to avoid stress and displacement.
- 2. Serves as a packing tissue filling spaces between adjacent tissues.
- 3. Provides transport for nutrients and metabolic waste.
- 4. Maintains an adequate degree of hydration around cells.
- 5. Provides protection against wounds and infections.

B) Adipose tissue

It is by type of connective tissue with reduced matrix material and contains enlarged fat cells that are numerous in number. Adipose tissue functions to store energy, insulate the body and provides shock absorption to delicate mammalian organs e.g the kidney. It also occurs beneath the skin, the lungs, ears, eyelds, penis and nervous system are devoid of fats. Adipose tissue occurs in two forms i.e the white and brown adipose tissue. Functions

- \succ The adipose tissue acts as a shock absorber by providing a cushioning effect to body parts.
- > Acts as a form in which energy is stored in the body.
- Acts as an agent of thermal regulation(temperature regulation) by insulating the body against heat loss through the skin.

RECTICULAR CONNECTIVE TISSUE

It contains an abundance of recticular fibres. It provides a supporting framework for organs such as those of the light nodes, spleen and the liver.

C) DENSE (FIBROUS) CONNECTIVE TISSUE (DCT)

DCT Scontains tightly packed collagen fibres making it stronger than the lose connective tissue. It consists of two genes, regular and irregular.

The collagen fibres in the dense regular connective tissue are oriented in one direction to provide strength in that prection. It is found in tendons and ligaments. Tendons connect muscles to bones, ligaments connect bone to bone.

Irregular dense connective tissue contains collagen fibres oriented in many different directions. It is found in deep ayers of the skin and the tough capsules that surround many of the organs e.g the kidney, adrenal glands, nerves, bones and covering of the muscles as epimysium and periosteum covering bones. It provides support and strength.

RECTICULAR CONNECTIVE TISSUE

It contains an abundance of recticular fibres. It provides a supporting framework for organs such as those of the lymph nodes, spleen and the liver.

C) DENSE (FIBROUS) CONNECTIVE TISSUE (DCT)

DCT contains tightly packed collagen fibres making it stronger than the lose connective tissue. It consists of two types, regular and irregular.

The collagen fibres in the dense regular connective tissue are oriented in one direction to provide strength in that prection. It is found in tendons and ligaments. Tendons connect muscles to bones, ligaments connect bone to bone.

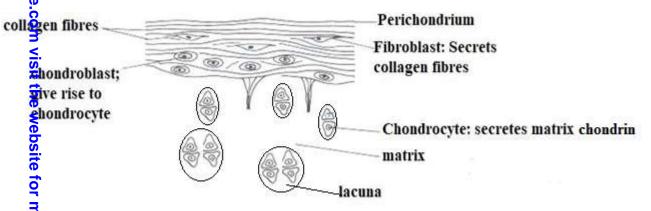
Irregular dense connective tissue contains collagen fibres oriented in many different directions. It is found in deep ayers of the skin and the tough capsules that surround many of the organs e.g the kidney, adrenal glands, nerves, bones and covering of the muscles as epimysium and periosteum covering bones. It provides support and strength.

Malavy H.

ication materials

SPECIAL CONNECTIVE TISSUES

D) SELETAL TISSUES


Down

Reponsible for supporting the body and providing it with a rigid frame work. They consist of cells which are embedded in an organic matrix.

1) CARTILAGE/GRISTLE

This is a connective tissue consisting of cells embedded in a matrix called **Chondrin**. The matrix is deposited by cells called **chondroblasts** and possess many fine fibres mostly collagen. Eventually, the chondroblasts become enclosed in spaces called **lacunae**. In this state, they are termed as **chondrocytes**.

The margin of a piece of cartilage is enclosed by a dense layer of cells and fibrils called **perichondrium** in which new chondroblasts are produced and constantly added to the internal matrix of the cartilage.

Cart age is highly adapted to resist any strains that are placed on it. The matrix of cartilage is compressible and elastic. The collagen fibres resist any tensions which may be imposed on the tissue.

The Artilage in adults is restricted to the articular (joints) surfaces of bones that form freely moveable joints and wher specific locations e.g the nose, pinna, intervertebral discs, larynx, etc.

TYPES OF CARTILAGE

There are three types of cartilage each with the organic components of the matrix quite distinct. They include; hyaline cartilage, yellow elastic cartilage and white fibrous cartilage.

I) HEALINE CARTILAGE

It is the simplest form of cartilage which is elastic and compressible. It mainly comprises a semitransparent matrix and chondrocytes. It frequently contains fine collagen fibrils. It has no processes extending from the lacunate into the matrix and neither are there blood vessels. Therefore, exchange of materials between the chordroblasts and the matrix is by diffusion.

It is becated in the ends of the bones, in the nose and the wall of the trachea and bronchi. It also forms the embergionic skeleton in many vertebrates.

II) YELLOW ELASTIC CARTILAGE

It has a semi opaque matrix containing a network of yellow elastic fibres. The fibres confer greater elasticity than out in the hyaline cartilage. Due to high elasticity and flexibility, the tissue quickly returns to its shape after distortion.

It is cated in the external ear, in the epiglottis and cartilages of the pharynx

III) WHITE FIBROUS CARTILAGE

In addition to chondrocytes in the matrix, there are large bundles of densely packed collagen fibres. This gives the tissue a greater tensile strength than hyaline cartilage as well as a small degree of flexibility.

It is cated in the discs between adjacent vertebrae which provide a cushioning effect and the ligamentous caps es surrounding the joints.

<u>2</u>) **BQNE**

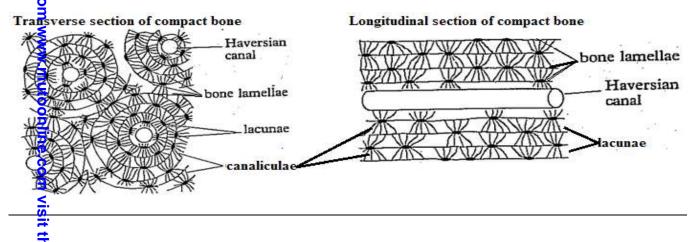
This is very abundant providing support, protection and some metabolic functions. The bone has an organic matrix containing collagen fibres, and is impregnated with small needle shaped crystals of calcium phosphate in form of hydroxyapatite which is brittle but rigid giving bone great strength. Calcium carbonate is also contained with the matrix.

A bose is a dynamic living tissue that is constantly reconstructed through the life of an individual by bone cells called **osteoblasts**. Osteoblasts secrete the matrix in which calcium phosphate is later deposited. After calcium phosphate has been deposited, the osteoblasts become less active and are now called **osteocytes** and are energyzed in spaces called **lacunae**.

Another type of bone cells called **osteoclasts** exist in the matrix which play a role in dissolving the bone matrix to enable further reconstruction of a bone during growth. A bone is constructed in thin concentric layers called **lamelae** which are drawn around narrow channels called **haversian canals** that run parallel to the bone length.

Havesian canals contain nerve fibres and blood vessels which keep the osteocytes alive. The concentric lamenae and the encircled canal are termed as the **Haversian system/osteon**.

The acunae have very many fine channels called **canaliculi** containing cytoplasm which link up with the central haversian canal, with other or press from one lamella to another. An artery and a vein run through the haversian canal and capillaries branch from here through the canaliculi. A haversian canal also contains lymph vesses and nerve fibres. Covering the bone is a layer of dense connective tissue called **periosteum**. The inner region of the periosteum has blood vessels and contains cells that can develop into osteoblasts and osteoclasts.

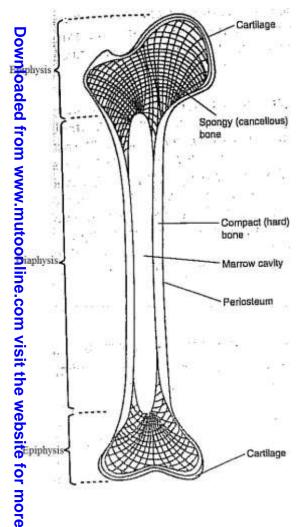

Bon act as a store for calcium and phosphate. These minerals may be released in blood when needed under the control of hormones **Parathormone and Calcitonin**. Parathormone stimulates increase in calcium and decrease phosphate levels. While calcitonin stimulates the decrease in calcium ion concentrations in blood.

Types of bone

There are two types of bone i.e compact/dense bone and spongy bone

1.COMPACT BONE/DENSE BONE

The gare mainly part of long bones and form the long shape of the bone between two swollen ends. The matrix of compact bones is composed of collagen and calcium phosphate, with large quantities of magnesium, sodium, carbonate, nitrate ions. The combination of organic with inorganic materials produces a structure of great strength. The lamellae are laid down in a manner that is suited to the force acting upon the bone and the load that has to be carried.


2.Spangy/cancellous bone

Spore y bone occurs within longer bones and is always surrounded by compact bone. Spongy bone consists of thin bars or sheets of bone called **trabeculae**, interspersed with large spaces occupied by the bone marrow.

The properties which are more or less irregularly dispersed in the matrix. The matrix contains rather a smaller proportion of inorganic material than does the matrix of the compact bone. The trabegulae develop along the lines of stress within the bone.

The spaces within the spongy bone at the head (epiphysis) of the long bones contain red bone marrow tissue. This very soft tissue is less dense than the bone, and is the site of red blood cell formation. Yellow marrow tissue consisting principally of fat fills the spaces within the spongy bone of the shaft.

Long tudinal section through a Long bone

THE DEVELOPMENT OF BONE (OSSIFICATION)

Ossification is the process of formation and development of bone. A bone originates in two ways; intramembranous ossification, Osteonal and endochondral ossification.

a) Intramembranous ossification

The thin bony plates of the skull and parts of some other bones e.g clavicles are formed directly by clusters of ossification which

b) Endochondral/Intra-cartilaginous ossification

Endochondral ossification is the process of replacement of cartilage by bone.

c) Osteonal ossification. Bone is laid down on walls or spaces of existing bone leading to formation of harversian bone.Occurs in case of repair of broken bone structure.

ADAPTATIONS OF BONE TO ITS FUNCTION

a) Agough fibrous layer of dense connective tissue called periosteum provides a tough and hard covering that surrounds the bone and protects the inner cells.

b) Bundles of collagen fibres from the periosteum penetrate the bone giving more mechanical strength,

proving an intimate connection between the underlying bone and the periosteum and acting as a firm base for insergion of tendons, which contribute to movement and locomotion.

c) Or teoblasts are arranged in concentric rings around a series of haversian canals in compact bone thus lay down the matrix in a similar rigid and dense regular pattern to provide uniform mechanical strength.

d) Bene lamellae contain numerous lacunae containing living bone cells called osteoblasts which secrete the matrix of the bone.

e) Mature less active osteoblasts called osteocytes can be reactivated quickly regaining the structure of active osteoblasts and depositing bone matrix, when structural changes in bone are required.

f) Beine cells are embedded in a firm bone matrix which is rendered hard by deposition of calcium salts and othe ginorganic ions.

g) Bene cells called osteoclasts responsible for dissolving of the matrix as it is laid down enable reconstruction and modeling of the bone during endochondral ossification.

h) An artery, a vein and a lymph vessel pass through a haversian canal of a compact bone allowing the passage of nurrients, respiratory gases and metabolic wastes towards and away from the bone cells.

i) Each lacuna has fine cytoplasmic extensions called canaliculi which pass through lamellae and make connections with other lacunae and with the central haversian canal, allowing communication between the lacunae in different lamellae, and with the central haversian canal.

j) Persence of numerous nerve fibres in the haversian canal allows co-ordination of bone reconstruction enabling each bone to adapt its structure to meet any change in mechanical requirement of an animal during its development.

k) Bone releases calcium and phosphate into the bloodstream as required by the body under the control of the hormones parathormone and calcitonin.

I) Spongy bone has spaces between the trabeculae, reducing the weight of the bone, allowing less restricted movement and locomotion.

Differences between compact and spongy bones

Sp <mark>@</mark> ngy bone	Compact bone
1. Exck haversian system	Has numerous haversian system
2. Kas spaces within its matrix which are filled with	Its matrix is dense and completely solid.
r <mark>e</mark> d bone marrow.	
3. It has a loose matrix	Its matrix is hard.
4. Mainly occurs in embryos growing organisms	Its mainly occurs in the shafts of long bones eg
and epiphysis of long bones.	femur and humerus etc.
5. Manufactures red blood cells and white blood	Store fats within its marrow cavity(yellow marrow
🚓 lls from its matrix.	

D		Cartilage	Bone
M	1.	No process extended from each lacuna into the	Lacuna possesses canaliculi that extend into the
õ	•	matrix.	matrix.
De	2.	No blood vessels and nerves in the tissue.	Blood vessels and nerves run through the
Ĕ			haversian canal.
6	3.	Exchange of material between chondrocytes	Osteoblasts exchange materials by help of blood
Ĕ		occurs by diffusion.	capillaries passing through the canaliculi into
W			the lacunae.
X	4.	Elastic and compressible	Relatively incompressible as the matrix is
B			highly composed of minerals e.g calcium ions,
ğ			magnesium ions.
Ĭ	5.	Matrix is relatively semi-transparent with	Matrix is opaque
IDe		hyaline cartilage and semi opaque in yellow	
ģ		elastic cartilage.	
Ĕ	6.	The matrix is not calcified.	Matrix is calcified with greater quantities of
¥			Mg^{2+} , Na^+ , Ca^{2+} etc.
Ĕ	7.	No concentric layers of lamellae and no	Consist of concentric layers of lamellae
ine		haversian canals present.	surrounding the haversian canal.
K	8.	Rather inactive.	An active tissue with metabolic activity.
ğ	9.	Matrix secreting cells are called	Matrix secreting cells are called osteoblasts.
Ĭ		chondroblasts.	
6	10	It is differentiated into hyaline, white fibrous	It is structurally differentiated into compact and
Ē		and yellow elastic cartilage.	spongy bones
ğ	11	.It is flexible due to relatively soft and flexible	It is rigid due to solid matrix called osteon.
P		matrix called chondrin.	
A	12	.It is less strong.	It is stronger.
ť	13	Chondroblasts are randomly scattered in the	Osteoblasts are in concentric layers around the
F		matrix and occur in singles, pairs or fours.	haversian canal.
F	14	.It is mostly found in areas where cushioning is	It is located in areas where maximum support is
	j	required.	needed.
a la			
a			
2			

DIFFERENCES BETWEEN A CARTILAGE AND BONE

D) MUSCLE TISSUE

There are three types of muscular tissue which include: voluntary muscle, involuntary muscle and cardiac muscle.

BASC STRUCTURE OF A MUSCULAR TISSUE

- a) A muscle fibres are made up of elongated and thin cells called muscle cells or muscle fibres.
- b) The muscle fibres contain a specialized cytoplasm called sarcoplasm that contains a network of membranes called sarcoplasmic reticulum.
- c) Muscle fibres may be bound by a cell membrane called sarcolemma.
- d) Each muscle may contain numerous thin myofibrils.

e) They also possess sarcosomes (mitochondria).

1). VOLUNTARY/ SKELETAL /STRIATED OR STRIPED MUSCLE

It is said to be striated because its muscle cells have transverse stripes when viewed in longitudinal section.

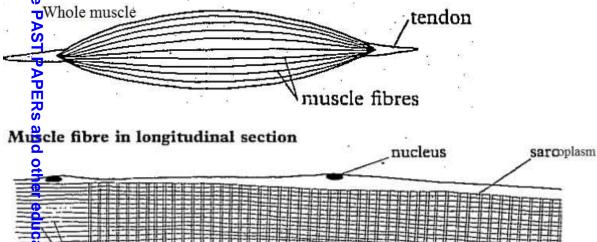
Dist<mark>Ebution of skeletal muscles</mark>

It is gound attached to the skeleton in the head, trunk and limbs hence the name skeletal muscle.

STRUCTURE OF A SKELETAL MUSCLE

Skeletal muscle is composed of bundles of muscle fibres each surrounded by a connective tissue, **endomysium**. Each bundle of muscle fibres is surrounded by **perimysium**, a connective tissue, the various bundles are surrounded by an **epimysium**, a connective tissue sheath.

The skeletal muscle is attached to a bone in at least two places namely; the **origin**, a fixed non-moveable part of the skeleton and the **insertion**, a moveable part of the skeleton.


Attagement is by a means of tough relatively inelastic tendons made up of almost entirely collagen fibres. At one end, the tendon is continuous with the outer covering of the muscle while the other end is of the tendon coments with the outer layer of the bone called **periosteum** and forms a very firm attachment.

HISTOLOGY OF A STRIATED MUSCLE (SKELETAL MUSCLE)

The muscle is made up of many hundreds of long muscle cells called **muscle fibres**. Each muscle fibre is filled with cytoplasm called **sarcoplasm** in which about 100 nuclei are spaced out evenly just beneath the bounding memorane called **sarcolemma**.

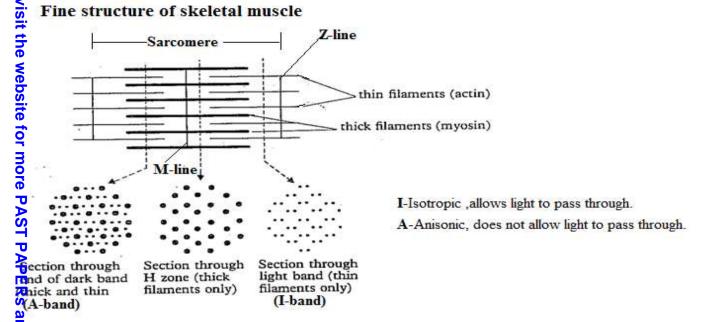
In the sarcoplasm, there are many thin myofibrils which possess characteristic cross striations. The myofibrils line **B**p perpendicular with the cross striations next to each other. The myofibrils are composed of protein filaments called **actin** and **myosin**.

striations

on materials

myofibrils

sarcolema

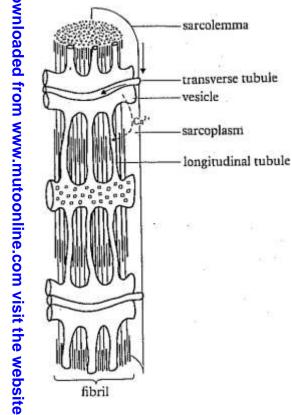

FINE STRUCTURE OF A STRIATED MUSCLE

Each myofibril is divided into light and dark bands. The dark band has a comparatively light region in the middle called **H- zone**, and it has darker regions on either sides. In the middle of the H- zone is a dark line called the **M- line**.

Running through the light bands in the middle is the **Z**-line. The dark and light bands are called **A** and **I** bands respectively. **I** means isotropic, as it allows light to pass through and so appears lighter. **A** means anisotropic as it does not allow light to pass through, so it appears darker.

The begion of a myofibril between two Z-lines is called a **sarcomere** and is described as the basic functional unit of a myofibril. Alternating light and dark bands are due to two types of protein filaments which run long udinally. These are the **thin actin** and **thick myosin** protein filaments. The thick myosin filaments are confided to the dark band and the thin actin protein filaments occur in the light band but extend in between the thick myosin filaments within the dark band.

The arker segments on either side of the H- zone are due to both thick myosin and thin actin filaments **oversapping**. The H-zone consists only thick myosin protein filaments. The thin actin filaments alone are found in the light band.



Within each muscle fibre, there is an internal membrane system, the **sarcoplasmic reticulum** surrounding the myon brils. The sarcoplasmic reticulum includes a system of **transverse tubules** (the **T- system**) which run into the muscle fibre from the sarcolemma at positions corresponding to the Z- lines.

Connected with the T- system are vesicles containing calcium ions in high concentration. Ca²⁺helps in hydrolysis of ATP. After muscle contraction, calcium ions are actively removed into the longitudinal tubules thereby lowering the concentration to a level below that at which ATP hydrolysis can occur.

materials

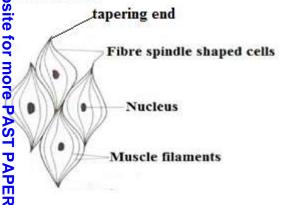
DIAGRAM OF A MYOFIBRIL TO SHOW THE TRANSVERSE AND LONGITUDINAL TUBULES OF THE SARCOPLASMIC RETIVULUM

There are four blood capillaries surrounding each muscle fibre. Each branch of the axon terminates at a plate like structure called **neuromuscular junction**. The motor end plate forms the neurone-tomuscle synapse, the connection between the motor neurone and the muscle fibre.

All the muscles served by the same motor neurone are called **motor unit** because they work as a unit contracting and relaxing at the same time. The motor unit is the basic functional unit of a skeletal muscle.

ADASTATION OF SKELETAL MUSCLE TISSUE FOR ITS FUNCTION/RELATIONSHIP BETWEEN STRUCTURE AND FUNCTION OF A STRIATED MUSCLE

- ► E consists of elongated fibres, allowing considerable contractile length.
- ➤ Is fibres are parallel to give it maximum contractile effect and to allow each fibre to be controlled individually which gives ability to vary the length of the whole muscle contraction necessary for proper control of skeletal movement.
- > The ends of the muscle fibre are tapered and interwoven with each other to provide adequate mechanical strength during muscle contraction.
- > $\frac{1}{10}$ cells contain a large number of mitochondria to provide large amounts of ATP for muscle contraction.
- \succ In their arrangements, the actin and myosin filaments fit into each other to allow them slide over each other to cause contraction.
- \succ The cells have a rich blood supply to provide adequate supply of oxygen and nutrients.
- \succ the muscle cells have myoglobin to store oxygen and release it for respiration when blood oxygen levels $\frac{1}{2}$ low.
- ➤ bas a specialized region called the motor end plate where the axon of a motor neurone divides and forms the non myelinated branches (dendrites) ending in synaptic knobs running in shallow troughs on the sarcolemma allowing nervous stimulation and control of the muscle.
- ➤ The sarcolemma folds inwards and forms a system of tubes called the T- system (transverse tubules) which ron parallel through the sarcoplasm to the Z- lines allowing a nerve impulse arriving along a motor neurone at the neuromuscular junction at the surface of a muscle fibre to be propagated as a wave of depolarization (action potential) through the T- system causing release of calcium ions of the sarcoplasmic reticulum to activate the process of muscle contraction.


- > The specialized endoplasmic reticulum of the muscle fibre called the sarcoplasmic reticulum forms the sicles at the Z- line of the sarcomeres which contain calcium ions used to activate the process of muscle intraction.
- \triangleright $\vec{\mathbf{A}}$ bility to generate ATP using phosphocreatine during anaerobic conditions for a constant supply of ATP in the muscle.
- > Applity to respire anaerobically for continued muscle contraction in anaerobic conditions.

2.VISCERAL/INVOLUNTARY/UNSTRIATED/UNSTRIPED/SMOOTH MUSCLE

 \checkmark It consists of muscle cells called muscle fibres which are spindle shaped and tapering at both ends and uninucleated.

- \checkmark The nucleus is single, elongated in shape, centrally placed and surrounded by little sarcoplasm.
- \checkmark The muscle fibres lack a sarcolemma.
- ✓ E → h muscle fibre consists of numerous inconspicuous, fine contractile myofibrils arranged longitudinally.
- \checkmark The actin and myosin filaments are evenly distributed hence there are no striations or light and dark bands.
- \checkmark Shooth muscle fibres are shorter than striated muscle fibres.
- \checkmark Has sarcoplasmic reticulum but less extensive than in striated muscle.
- \checkmark Has rings of smooth muscle fibres called sphincter muscle fibres for example; pyloric, cardiac and anal sphincters.
- \checkmark Has prominent mitochondria but less numerous than in striated muscle.

Smooth muscle

INNERVATIONS AND ACTIVITY OF THE SMOOTH MUSCLE

- Spooth muscle is involuntary in action, so cannot be moved by ones will.
- Inservated by two sets of nerves from the autonomic nervous system (sympathetic and parasympathetic).
- Smooth muscle fibres undergo prolonged and slow, sustained rhythmical contractions and relaxations as in periscalsis, hence fatigues slowly.

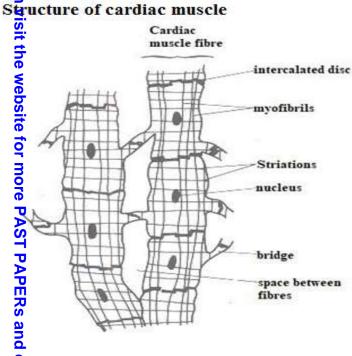
The mooth muscle is located in the tracts of the intestines, genitals, urinary and respiratory systems and the wall of blood vessels

Functions of the smooth muscle

- i. The anal sphincter controls the elimination of feaces from the body.
- ii. The pyloric sphincter controls passage of food from the stomach to the duodenum.

iii. Small sphincter muscle surrounds some blood vessels to control the distribution of blood and regulation of blood pressure.

iv. Control movement of materials with the body visceral organs.


3.CARDIAC MUSCLE

It is found only in the heart.

THE TRUCTURE OF A CARDIAC MUSCLE

A cardiac muscle consists of a network of interconnected cells called cardiac muscle fibres. Each muscle fibre is short cylindrical and branched. Each muscle fibre possesses one large mitochondrion, with one nucleus or two nuclei, abundant cytoplasm, glycogen granules, well developed T system and poorly developed endoplasmic reticelum consisting of a network of tubules.

Cardiac muscle fibres are terminally branched and connected to each other by intercalated discs. Actin and myosin filaments are regularly arranged to give faint but regular cross striations. Muscle fibres branch and cross connect with each other to form a complex netlike arrangement.

- Cordiac muscle is myogenic meaning that the contractions are developed within the muscle.
- The rate of contraction can be influenced by the autonomic nervous system.
- Inderconnections between the fibres (intercalated discs) ensure a rapid and uniform spread of the excitation.
- Have rhythmic rapid contractions and relaxation with a long refractory period and so do not fatigue as contraction is not sustained.
- Need a constant supply of large amounts of energy.

• A small number of cardiac muscle fibres and a few nerve endings form the Sino atrial node (SAN) located near the opening of the vena cava which stimulates heart beat on their own.

ADAPTATIONS OF THE CARDIAC MUSCLE TO ITS FUNCTION

a) Cordiac muscle cells are highly branched terminally and connected to each other by intercalated discs to forms network that allows rapid spread of waves of electrical excitation from cell to cell, so that linked muscle cells apidly contract rhythmically and simultaneously for fast heartbeat.

b) Dense network of blood capillaries ensures adequate supply of oxygen and food nutrients, for fast production of adequate ATP, for continuous rapid muscle contraction and rapid excretion of carbondioxide and other metabolic wastes.

c) No merous large mitochondria and glycogen granules rapidly provide adequate amounts of energy in form of adenessine triphosphate (ATP) by aerobic respiration for rapid contraction without fatigue.

d) Has the Sino atrial node (SAN) which emits waves of electrical excitation that initiate continuous and rhythenic contraction without fatigue, for continuous heartbeat.

e) Have striations for mechanical strength to support its fast and continuous contractions.

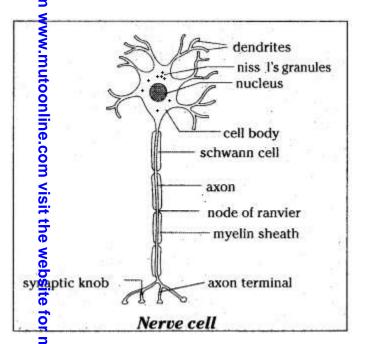
f) Usedergoes rapid rhythmic contractions and relaxations with long refractory periods and thus does not fatigue as contraction is not sustained.

g) Well-developed T-system for rapid transmission of impulses thus rapid contraction and relaxation.

h) Beinched muscle fibres offer a large surface area for fast spread of waves of electrical excitation for continuous contraction hence continuous heartbeat.

A COMPARISON OF VOLUNTARY, INVOLUNTARY AND CARDIAC MUSCLES (SIMILARITIES AND DIFFERENCES)

eatures	Voluntary	Involuntary	Cardiac
Ś	Striated, striped, skeletal	Unstriated, unstriped, smooth	Heart
ecialization	Moat Highly specialised	Least specialised	More specialized than involuntary muscle
Pructure of	Very long cells, usually called fibres, subdivided into units called sarcomeres. Fibres bound together by vascular connective tissue	Consists of individual, spindleshaped cells, associated in bundles or sheets	Cells terminally branched and connected to each other by special interdigitating surface process, the intercalated discs. Arrangement of fibres is three dimensional.
Vacleus	Several in variable positions near periphery of fibre	Single, elongated in shape and centrally placed	Several centrally placed
ytoplasmic ontents	Mitochondria in rows in periphery and between fibres, prominent SER forming network of tubules, Tsystem well developed, glycogen granules and some lipid droplets	Prominent mitochondria, individual tubules of the SER, glycogen granules	Numerous large mitochondria in columns between cells, poorly developed SER consisting of network of tubules, T-system well developed.
arcolemma	Present	Absent	Present
mervation	Under control of the involuntary nervous system via motor nerves from the brain a	Under control of autonomic nervous system	Myogenic, but rate of contraction can be influenced by the autonominervous system
ross striations	Present	absent	Present
tercalated Rscs	Absent	absent	present
ocation	Attached to the skeleton in the trunk, limbs and head	In walls of intestinal, genital, urinary and respiratory tracts, and the walls of blood vessels	Found only in the walls of the hear chambers


NER VOUS TISSUE

It comprises of an intricate network of interconected nerve cells called neurons which are specialized for conduction of nerve impulses. The neurons are the basic functional units of the nervous system. Malavy H. Page 24

STRUCTURE OF A NEURON

Each heuron posses a cell body and cytoplasmic extensions (nerve fibers'). Each cell body contains a nucleus and bundant granular cytoplasm. The cytoplasm also contains prominent conical granules called **Nissl's** granules which are groups of ribosomes and rough endoplasmic reticulum rich in RNA and associated with protein synthesis.

From the cell body extends out two types of cytoplasmic extensions; a Dendron and axon.

GENERAL FUNCTIONS OF THE PARTS OF A NEURON

1. Cell body; this consists of a nucleus surrounded by a mass of cytoplasm. The nucleus controls all activities of the neuron.

2. Agon; this is one or more long cytoplasmic extensions running from the cell body. Axons carry impulses over the body. Each axon is filled with cytoplasm called **axoplasm**.

3. Myelin sheath; this is a fatty material that covers the axon. The myelin sheath is secreted by cells called Schwann cells. The myelin sheath insulates the axon and speeds up transmission of impulses. It also protects the axon from any injuries especially which may be as a result of contraction from muscles.

4. Dendrites; these are fine structures on the neuron that link up nerve cells to form a complex network of compunication.

- 5. Some value of the secretes the myelin sheath.
- 6. Nest's granules; these are groups of ribosomes responsible for protein synthesis.

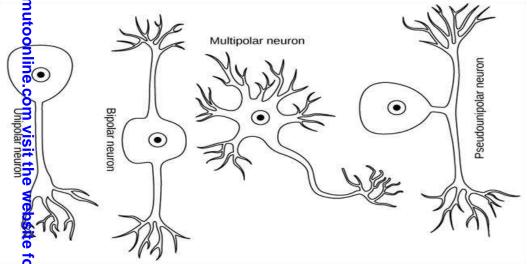
7. Node of Ranvier; this is the space on the axon between two adjacent myelin sheaths. It speeds up nervous transmission.

8. Cytoplasm; this is a site for chemical reactions in the neuron.

9. **Dendrone**; it is a branch through which impulses are transmitted to the body.

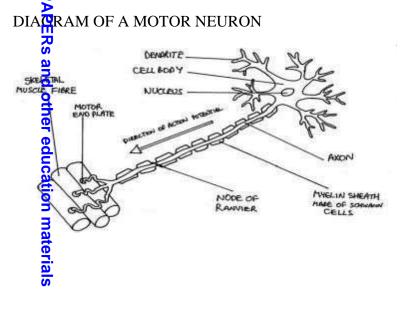
POI RITY OF NEURONES

Depending on the number and arrangement of these processes from the cell body, the neurons are said to be unipolar, pseudo-unipolar, bipolar or multipolar.

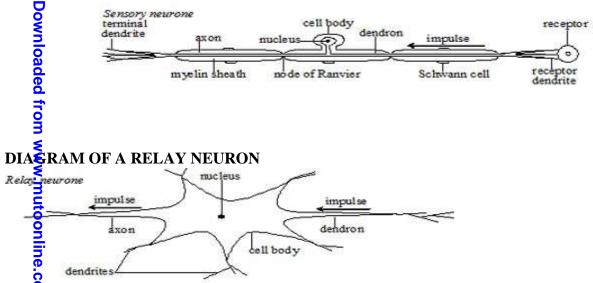

Unipolar:-It is a neuron with the axon as the only large branch from the cell body e.g arthropod motor neuron.

Bipoar neuron:-It is one where two processes, an axon and a Dendron project from the cell body. Examples of bipoar neurons are found in the retina of the mammalian eye.

Mulapolar neuron:-It is one which has one axon and several dendrons from the cell body. An example is the motor neuron.


Pseudounipolar:- It is where the cell body is not found along the axis/end of the axon. Instead, it is connected by a short side branch of the axon e.g sensory neuron.

DIAGRAMS



TYPES OF NEURONS/NERVE CELLS

- <u>Sensory/afferent neurons</u>:- These conduct impulses from the receptors to the central nervous system.
- <u>Metor /efferent neurones</u>:- These conduct impulses from the central nervous system to the effectors.
- <u>Reav/intermediate neurons</u>:- These transmit impulses from the sensory neuron to the motor neurone. They are only found in the central nervous system.

DIAGRAM OF A SENSORY NEURON

NB: The process which brings impulses towards the cell body is called a Dendron and the one which conducts impugses from the cell body is called the axon.

Assignment: Compare the structure of a motor neurone and a sensory neurone.

PLANT TISSUES

1) MERISTEMATIC TISSUE

It is a plant tissue consisting of actively dividing cells which give rise to cells that differentiate into new tissues of the plant.

MERISTEM

A meristem is a group of plant cells which remain with the ability to divide by mitosis producing daughter cells which grow to form the rest of the plant body.

PAST PAPERs and other education materials

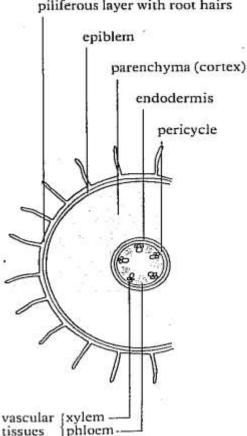
Types of meristems

Transverse section of a young dicotyledonus root

piliferous layer with root hairs

Apical meristems: - They are found at the shoot tip and root tip. They divide continuously by mitosis leading to primary growth of the plant body that is increase in length of the shoot or root.

Lateral meristems (cambium):- These are found in a cylinder towards the outside of stems and roots. They are responsible for secondary growth and cause an increase in girth. They include the vascular cambium which gives rise to secondary vascular tissue incluting secondary xylem and phloem. They also include the cork cambium (phelogen) which gives rise to periderm which replaces the endermis and includes the cork.

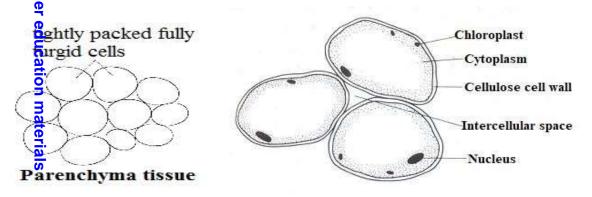

Intergalary meristems: - These are found at the nodes in mongotyledonous plants. They allow an increase in length in positions other than the tip. Ensures continued growth where tissues are demaged such as when eaten by herbivores in grasses.

Types of plant tissues

Plant fissues are of two categories;

1. Simple plant Tissues-Those made up of one type of cell, including Parene hyma, Collenchyma and Sclerenchyma.

2.Compound plant Tissues-Those made up of more than one cell type, include Vascular tissues which consisit of Xylem and phloem tissues.


A) SIMPLE PLANT TISSUES

The vare tissues consisting of one type of cell. They include the parenchyma, collenchyma and sclerenchyma

1) PARENCHYMA

It consists of living cells which are relatively undifferentiated. The cells are either roughly spherical or elongated. The cells have thin cell walls made up of cellulose, pectins and hemicelluloses. The cells also have large sap vacuoles with dense but peripheral cytoplasm.

Parefichyma tissue is located in the cortex, pith and medullary rays of wood. It also serves as a packing tissue in xylen and phloem

FUNCTIONS OF THE PARENCHYMA TISSUE

a) As a packing tissue i.e cells of the parenchyma fill spaces between other specialized tissues e.g is the cortex, pith, between the xylem vessels and phloem.

b) When they are turgid, parenchyma cells become closely packed thus provide support for the organs in which they accur. For example in the leaves and in stems of herbaceous plants.

c) It is a storage tissue due to possession of starch granules and large food vacuoles. Therefore, the tissue is abundant in storage organs eg the Irish potato.

d) It allows transportation of materials through cells by symplast pathway or apoplast pathway.

e) The parenchyma tissue is metabolically active as it is composed of living cells for example some parenchyma are photosynthetic.

f) Growth of the pericycle in the roots where it retains the meristematic activity producing lateral roots and control buting to secondary growth.

g) In the endodermis, cells are covered by a fatty substance (suberin) that forms the casparian strip that prevents apoptast transportation of water through the root thus directing the flow of water into xylem.

h) It contains intercellular air spaces which allow gaseous exchange.

REIATIONSHIP BETWEEN STRUCTURE AND FUNCTION OF THE PARENCHYMA TISSUE

- 1. The cells are unspecialized to perform a variety of functions.
- 2. Many intercellular spaces to allow diffusion and exchange of gases.
- 3. This cellulose cell walls to allow passage of materials for transport.
- 4. Pansparent cell walls to allow light penetration for photosynthesis.
- 5. The cells are large and contain large vacuoles with a thin layer of cytoplasm to provide storage space for materials of the plant.
- 6. Fave isodiametric, roughly spherical or elongated cells to serve as a packing material between specialized calls.
- 7. Cells have permeable walls to allow entry of light for photosynthesis.
- 8. Calls have leucoplasts such as amyloplasts to store food such as starch.
- 9. Gells have chloroplasts to allow photosynthesis.
- 10. Rell walls contain cellulose, pectins and hemicelluloses for support.
- 11. The cells have chromoplasts such as in petals to provide bright colour to attract insects for pollination.

Modefied parenchyma

The include; epidermis, mesophyll, endodermis, pericycle, companion cells and transfer cells.

A) EPIDERMIS/EPIDERMAL CELLS

It is $\frac{1}{2}$ layer of one cell thick that covers the whole primary plant body.

Functions

The basic function is to protect the plant body from desiccation and infection. This is achieved by secreting cutin and forms the cuticle that is impervious to water.

Specialized epidermal cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and are important in opening and cells (the guard cells) bound/guard the stomata and the stomata and the stomata and the stomata and cells (the guard cells) bound/guard the stomata and t

3. Hair like structures on cuticle (epidermis) serve various purposes for example, root hairs increase on the surface area for absorption of water and mineral salts by the roots.

Hooked hairs of climbing stems prevent them from slipping off their supports.

Glandular cells on the cuticle secrete sticky substance that traps and kills insects and they may also secrete scent.

 $\frac{6}{2}$ The epidermal hairs of leaves reduce water loss from the plant as well as reflecting the sun's radiations. Being transparent, the epidermis allows passage of light in the mesophyll cells for photosynthesis.

Qn. State the various modifications of the epidermis to serve different functions

B) MESOPHYLL CELLS (CHLORENCHYMA)

Mesophyll is a packing tissue located between the upper and lower epidermis of leaves. There are two types of mesophyll cells.

- alisade mesophyll cells:-They are located in the upper layer called the palisade mesophyll layer. Cells are elongated and columnar in shape. They contain a large number of chloroplasts. The cells are tightly packed with very few and narrow air spaces.
- Spongy mesophyll cells:-They are located in the lower layer called the spongy mesophyll layer. Cells are spherical and irregularly shaped with fewer chloroplasts. They possess large intercellular air spaces between the cells.

The unctions of the mesophyll include: photosynthesis, gaseous exchange and Storage of starch.

AD APTATIONS OF THE MESOPHYLL TO ITS FUNCTION

i. Paisade mesophyll cells are column shaped with numerous chloroplasts in a thin layer of cytoplasm to carry out photosynthesis.

ii. Paisade mesophyll cells are tightly packed together forming a continuous layer that traps incoming light.

iii. The chloroplasts within the mesophyll cells can move towards light allowing them to be in the best positions to receive light.

iv. Spongy mesophyll cells are irregularly shaped hence fit together loosely leaving large air spaces to allow efficient gaseous exchange via the stomata.

v. The mesophyll cells contain numerous amyloplasts for storing starch.

C) EDODERMIS

It is the innermost layer of the cortex surrounding the vascular tissue of the roots and stems. It consists of living, elongated and flattened cells. The cell wall of endodermal cells comprises cellulose, pectins, hemicelluloses and deposits of suberin.

FUNCTIONS OF THE ENDODERMIS

- At a selective barrier to movement of water and mineral salts between the cortex and xylem in roots.
- Indicot stems, it stores starch forming a starch sheath with a possible role in the gravity response of stems.

ADAPTATIONS OF THE ENDODERMIS TO ITS FUNCTIONS

- 1. The endodermis of roots has the casparian strip (made up of suberin) which is impermeable to water and prevents water and solutes from flowing through the air spaces of the cell walls of the endodermal cells (apoplast pathway). This forces water through the cell surface membrane into the cytoplasm of the endodermal cells, hence allowing the endodermal cells to regulate the movement of solutes into the xylem.
- 2. Active pumping of salts by endodermal cells into the xylem allows rapid movement of water by osmosis into the xylem leading to a buildup of root pressure.
- 3. Control of movement of water and solutes by endodermal cells acts as a protective measure against the entry oppathogens and toxic substances into the xylem.
- 4. Indicots, the endodemal cells contain amyloplasts for storing starch grains forming a starch sheath.

D) PERICYCLE

It is a layer of modified parenchyma, one to several cells thick, located in roots between the central vascular tissue and the endodermis. It consists of one to several layers of living, roughly spherical and elongated cells. Their cell walls are composed of cellulose, pectins and hemicelluloses.

Fundions of the pericycle

- ▶ Produces lateral roots.
 - Contributes to secondary growth

AD APTATIONS OF THE PERICYCLE TO ITS FUNCTION

- It setains its capacity for cell division (meristematic activity) to produce lateral roots.
- Dete to its meristematic activity, it contributes to secondary thickening of the roots. e) Companion cells

They are specialized parenchyma cells found adjacent to the sieve tubes.

They have a prominent nucleus, dense cytoplasm with numerous small vacuoles, plastids and the usual cell organelles. They are metabolically very active with numerous mitochondria and ribosomes. Each companion cell connected to a sieve element by plasmodesmata.

FUNCTIONS OF THE COMPANION CELLS

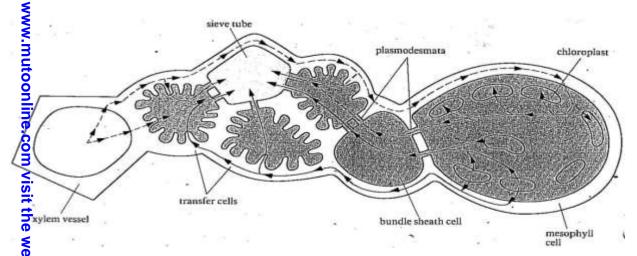
✓ Centrol of the activity of the adjacent metabolically inactive sieve tube elements.

 \checkmark Provide energy needed for the active processes which occur during translocation of organic solutes in the sieverubes

ADAPTATIONS OF THE COMPANION CELLS TO THEIR FUNCTION

- Person service elements with companion cells allowing communication and exchange of materials between companion cells and sieve tube elements.
- Companion cells have large nucleus to effect metabolic activity of both companion cells and sieve tubes.

• Companion cells contain numerous mitochondria to produce energy for active transport of materials in the sievelements.


F) TRANSFER CELLS

The pare modified form of parenchyma cells which have numerous internal projections (irregular intuckings) of the primary cell wall and plasma membrane. They posses numerous mitochondria in the dense cytoplasm. Like companion cells, they are associated with phloem sieve tubes. However transfer cells are not confined to the

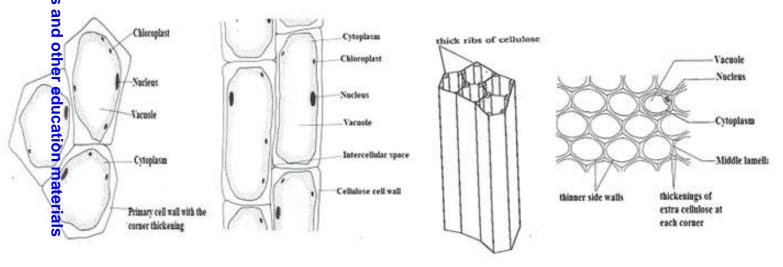
phloem. They are found in a number of places where active transport is thought to occur, forexample in the water secreting glands(hydathodes) at the edges of certain leaves, and in the secretory tissues inside nectarines. The salso occur in salt-secreting glands in the leaves of the saltbush Atriplex, a halophyte which lives in dry, saling soil.

 \checkmark In the leaf, transfer cells are responsible for moving the products of photosynthesis from the mesophyll cells to the sieve tubes (phloem loading).

 \checkmark They also carry water and salts from xylem vessels to the mesophyll cells and to the sieve tubes too.

AD APTATIONS OF TRANSFER CELLS TO THEIR FUNCTION

 \checkmark Non-internal projections of the cell wall and cell membrane increase the surface area and bring the cell membrane to closer association with the cytoplasm.


 \checkmark Numerous mitochondria in their cytoplasm provide energy for active transport of organic solutes such as sugars from neighbouring cells.

 \checkmark Have a large amount of starch granules which are broken down to glucose for aerobic respiration.

3) COLLENCHYMA

Collepchyma consists of living cells modified to give support and mechanical strength. The collenchyma is the first mechanical tissue to develop in the primary plant body.

Diagram of Collenchyma tissue cells

STRUCTURE OF COLLENCHYMA TISSUE

The sells are closely packe without air spaces between them. The cells are elongated and polygonal with tapeing ends. The cell walls consist of cellulose, pectins and hemicelluloses. The cells have extra deposits of cellulose at the corners of the cells causing uneven thickening of the cell walls. Cells are elongated, parallel to the longitudinal axis of the in which they are found.

DISTRIBUTION AND FUNCTIONS

Collenchyma cells which are relatively flexible provide support for plant organs allowing them to bend without breaking.

It is painly found in young plants, herbaceous plants and in organs such as the leaves in which secondary grown does not occur.

In the leaves, they are mainly found in the midribs of dicotyledonous leaves.

The gare also located at the periphery of the organs usually under the epidermis.

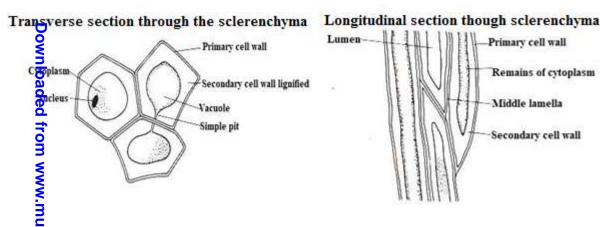
ADAPTATIONS OF COLLENCHYMA TO ITS FUNCTION

 \checkmark Deposition of extra cellulose at the corner of the cells leads to development of unevenly thickened cell walls to previde support and mechanical strength.

 \checkmark C Is are living and can grow and stretch, thus provide mechanical strength without imposing limitations on the growth of the other cells around it, allowing continued growth in young stems and leaves.

 \checkmark Colls are located towards the periphery of the organ just below the epidermis in the outer regions of the cortex to increase its support value in stems and petiole.

4) SCLERENCHYMA


These can only elongate when they are young. The mature cells are dead, incapable of elongation and contain no cytoplasm. The primary cell wall is composed of cellulose, pectins, hemicelluloses and thickened with deposits of lignin. Its thick cell walls contain simple pits, areas where lignin is not deposited on primary wall due & presence of a group of plasmodesmata.

There are two types of sclerenchyma cells that is **fibres** and **sclereids**.

FIBR S

er education materials

The cells are elongated and hollow with narrow lumens. The cells are polygonal in shape with tapering interfocking ends. The fibres are found in the outer regions of the **cortex**, **pericycle of stems**, **xylem and phlogm**. Its structure is as illustrated below;

Sclearing (stone cells) which are roughly spherical or irregular in shape they are found in the cortex, pith, phloren, shells and stones of fruits, seed coats. Its structure is as illustrated below;

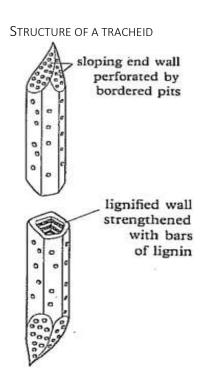
Ada stations of sclerenchyma to its function

- > Mave elongated fibres and spherical sclereids closely packed together to provide mechanical support.
- The primary cell wall is heavily thickened and lignified with heavy deposits of lignin, with great tensile strength and compression strength for support and mechanical protection.
- > Eigh tensile strength of lignified walls prevents breakage on stretching.
- ▶ ∰gh compression strength of the lignified walls prevents buckling or crushing under pressure.
- Expression are arranged into strands or sheets of tissue that extends longitudinally to provide combined explicitly strength.
 - Ends of cells of fibres interlock with the tapering ends of one another increasing combined supportive strength.

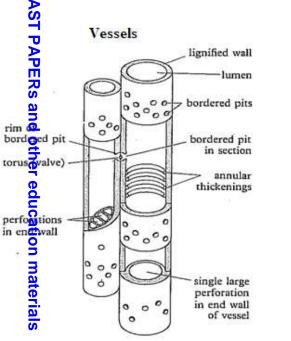
B) VASCULAR TISSUES

1) XXLEM

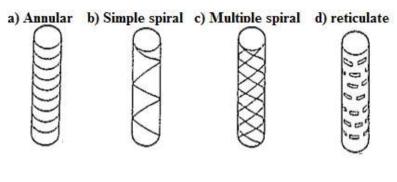
It is proved and many solutions is the plant of the plant. The xylem consists of four types of cells; tracheids, vessels elements, parent hyma and fibres.


APERs and other education materials

a) Tracheids


ine.com visit the

They are single cells with thick walls extensively lignified by heavy reposits of lignin. Some parts are not lignified forming bordered pits. They have tapering end walls that overland with adjacent tracheids. They are dead with empty lumen when mature. The cells are polygonal in cross section with 5 or 6 sides.


The tracheids represent the original primitive water conducting cells of vascular plants. They are the only cells found the xylem of the more ancestral vascular plants and are the only conducting elements in conifers.

b) Xolem Vessels ; A vessel is formed from a chain of elongated cylindrical cells (vessel elements) placed end the end. The cellulose side walls of the vessel elements are heavily lignified rendering them impermeable to water and solutes. The lignified walls are perforated by numerous pits called bordered pits where lignin fails to be deposited and only the primary cell wall remains. In the course of development the horizontal end walls of vessel elements break down partially or completely so that the cells are in open communication with each other. Mature vessel elements (cells) lack cell membrane and cytoplasmic contents. Vessel elements are shorter and wider than tracheids.

Different typesof thickening found in vessels

DIFERENCES BETWEEN VESSELS AND TRACHEIDS

/essels	Tracheids
y are cylindrical in shape.	They are 5 or 6 sided in cross section
we open ended walls on either sides	Have perforated closed end walls.
ave no tapering ends.	Have tapering ends.
er less resistance towards water passage.	Offer a significant or more resistance to water passage.
at conduction of large volume of water.	Conduction of less volume of water.

PBOTOXYLEM AND METAXYLEM

The first vessels of the xylem to form are the protoxylem. They are small in cross section and not lignified. They are found on the part of the apex just below the apical meristem where elongation of surrounding cells is still a king place. They undergo stretching and they collapse as they mature being replaced by metaxylem. Mature metaxylem vessels cannot stretch or grow because they are dead, rigid and fully lignified tubes. They become part of the permanent tissues of the plant.

NB:

1.T k xylem fibres provide additional mechanical strength to the xylem.

2. The xylem parenchyma serve functions such as food storage, deposition of tannins, crystals and other chemical compounds, radial transport of food and water and gaseous exchange through intercellular spaces.

ADAPTATIONS OF XYLEM TO ITS FUNCTIONS

1. X elem vessels and tracheids consist of long cylindrical cells joined end to end, hence are continuous with each other ensuring continuous flow of water in a continuous unbroken column.

2. Exit walls of the xylem vessels are completely broken down to form continuous tubes that allow uninterrupted flow of water.

3. Tracheids are perforated with numerous cellulose bordered pits that allow water to pass from one cell to another in lateral directions.

4. Dering development, the protoplasmic contents of vessels and tracheids die and disappear leaving empty hollow lumens, permitting uninterrupted flow of water without obstruction by living content.

5. In pregnation of cellulose walls with lignin increases adhesion of water molecules to walls thereby facilizating the rise of water by capillarity.

6. Lenifications of walls confer rigidity preventing walls from collapsing under large tension forces set up by the tension pull.

7. Narrowness of lumens of vessels and tracheids increases the rise of water by capillarity.

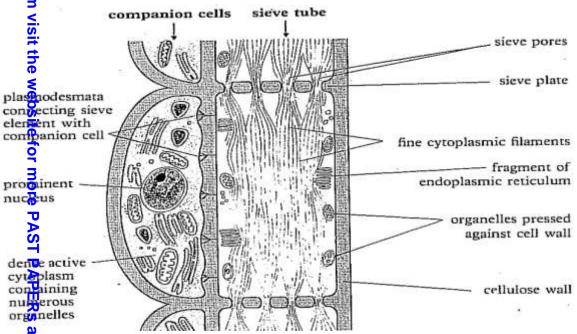
8. Xielem fibres have extremely thick walls which are heavily lignified and with narrow lumens to provide addigonal mechanical strength and support to the xylem.

2) PHLOEM

ma

It is avascular tissue modified for translocation of manufactured food. It is composed of five types of cells i.e sieve tube elements, companion cells, parenchyma, fibres and sclereids.

I) SIEVE TUBES


The sare long tube-like structures formed by end to end fusion of cells called **sieve tube elements/sieve** elements. The sieve elements have walls made of cellulose and pectins, but their nuclei degenerate and are lost as they mature.

The evtoplasm is confined to a thin layer around the periphery of the cell. Sieve elements are living but metabolically depend on adjacent companion cells. In between the sieve tube elements are **sieve plates**, formed from two adjoining end walls of neighbouring sieve elements.

The seve plates are perforated by sieve pores formed by enlargement of plasmodesmata. The sieve plates are madeup of a polysaccharide called **callose.** (having thickened or hardened spots)

II) Companion Cells

The have a thin cell wall and dense cytoplasm with a prominent large nucleus, numerous mitochondria, plasteds and small vacuoles and extensive endoplasmic reticulum. Companion cells are metabolically active and essential for the survival of sieve elements.

DIAGRAM OF A SIEVE ELEMENT AND ITS COMPANION CELL

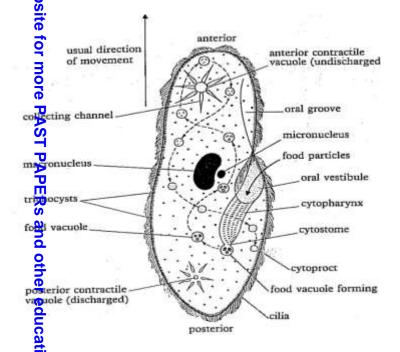
PROTOPHLOEM AND METAPHLOEM

Protechloem is the first phloem formed in the zone of elongation of the growing root or stem. Protechloem becomes stretched and eventually collapses becoming non functional as the tissue around it grows. As no re phloem is produced, the protophloem matures after elongation has stopped to produce the metaphloem.

ADA TATIONS OF THE PHLOEM TO ITS FUNCTION

- 1. Seve tube elements are joined end-to-end; their walls are perforated with sieve pores in sieve plates allowing passage of materials unimpeded from one cell to another.
- 2. Seve elements lack nuclei and possess a thin cytoplasm pushed to the sides of the cell, creating room for passage of organic materials in solution with minimal obstruction.
- 3. Transmodesmata connect sieve elements to companion cells which are metabolically active allowing communication and exchange of materials between sieve elements and companion cells.

- 4. Sieve elements contain cytoplasmic filaments continuous with similar filaments in other sieve elements via seve pores in the sieve plate, which consist of a contractile phloem protein capable of streaming and sliding again contractile from one sieve element to another by wave like movements of the filaments.
- 5. Companion cells possess numerous mitochondria to provide energy in form of ATP for active transport of materials.
- 6. Modified parenchyma companion cells called transfer cells found next to sieve tubes bear numerous internal projections increasing surface area of the cell membrane and also contain numerous mitochondria producing energy for active uptake of solutes from neighbouring cells during loading of sieve tubes.
- 7. Photom consist of living cells allowing live active transport of materials since the mechanism of loading seve tubes and transport of solutes requires energy.
- 8. Elereids are lignified to provide support to the vascular tissue of the phloem.
- 9. The companion cells are elongated and thin walled to provide a large surface area for diffusion of materials to the neighbouring cells.


LEVELS OF ORGANISATION

There are three types of levels of organization, these are;

1. USICELLULAR LEVEL OF ORGANIZATION

It is the where the physiological functions/processes of an organism are mainly performed by cell organelles. It is represented by single celled organisms such as paramecium.

Longitudinal section of a paramecium

The paramecium has the following main parts and their functions.

- \checkmark <u>Macronucleus</u>- It controls metabolic functions including growth.
- \checkmark <u>Macronucleus</u>- It is responsible for sexual reproduction.
- \checkmark <u>Contained</u> It is responsible for locomotion and creation of food currents.

 \checkmark <u>Contractile vacuoles</u> (anterior and posterior vacuoles)- Are for osmoregulation. They eliminate excess water from the cell to the exterior.

- \checkmark <u>Techocysts</u>- They are tiny explosive sacs containing needle shaped thread. They are used for defense in some species. They are used for paralyzing the prey.
- \checkmark <u>Food vacuoles</u>-They contain food particles at the base of cytoproct and it is where digestion takes place.
- \checkmark <u>Cytoproct-</u> They are sites through which undigested food is expelled to the exterior.

Advantages of unicellular organization

i. The distance from the surface of the organism to its centre is very short, that allows quick and efficient diffusion of materials in and out of the cell.

ii. It exposes a large surface area to volume ratio which also makes diffusion of materials easy. **iii.** Easy repreduction through fission.

DISA VANTAGES OF UNICELLULAR

i. There is inefficiency in the processes of an organism due to lack of specialization. **ii.** It is not possible for a organism to grow to a large size.

ADVANTAGES OF SMALL SIZE

i. Itallows fast locomotion.

ii. It presents a larger surface area to volume ratio hence allowing faster exchange of gases with the surrounding med m.

- iii. Organisms can easily pass through limited spaces.
- iv. ive The organism can occupy a variety of habitats.
- v. It has a high reproductive rate with a high survival chance.
- vi. Reganisms cannot easily be noticed by the predator/enemy.

DISA VANTAGES OF SMALL SIZE

- i. The organisms lose a lot of heat because of having a large surface area to volume ratio.
- ii. The organisms usually have a high metabolic rate hence eat a lot.
- iii. The organism cannot intimidate/scare the predator/enemy.

iv. The organism can easily be consumed by the predator wholly.

ADVANTAGES OF BIG SIZE

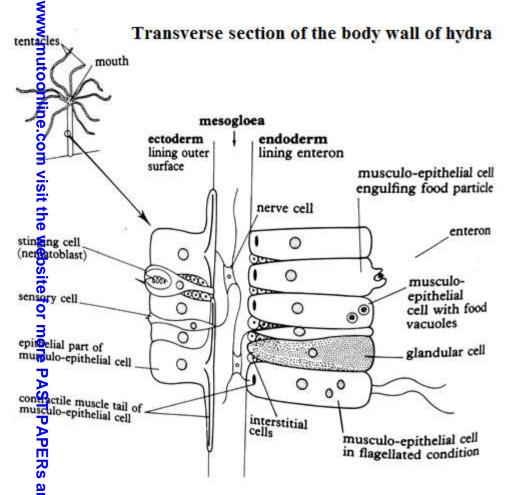
- i. It allows the organism to have a low metabolic rate hence eats less relative to body size.
- ii. The organism loses less heat because it has a small surface area to volume ratio.
- iii. The organism can easily intimidate/scare the predator/enemy.

iv. Adarge organism cannot easily be consumed, only parts of it can be consumed.

DISADVANTAGES OF BIG SIZE

i. The locomotion is usually slow.

ii. It presents a small surface area hence slower exchange of materials with the surrounding medium.


iii. There is a problem of passing through limited space hence can occupy limited habitats. **iv.** It usually allows a low reproductive rate with low survival chances. **v.** A large organism can easily be noticed by the predefor/enemy.

2. TISSUE LEVEL OF ORGANIZATION

It is the level of organization where the physiological processes are only carried out by isolated cells and tissues. Organisms in this level are mainly primitive multicellular animals. Such animals have very few organs. Example is the hydra.

HYDRA

It has a simple sac like body. Its cells are interdependent and to some extent integrated by the nervous

THE WALL OF THE HYDRA

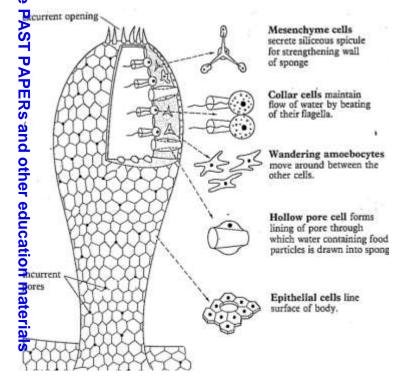
It is composed of seven different types of cells arranged in two sheet like layers called **ectoderm** and **endoderm**. The ectoderm lines the external surface whereas the endoderm lines the body cavity/enteron.

Between the ectoderm and endoderm is an intersurface called the **mesogloea** in which there are nerve cells that $\frac{1}{2}$ interconnected to form a nerve net. Each of the different cells performs a specific function as stated belog.

- 1. Musculo-epithelial cells- These are cells lining the upper surface in the ectoderm and are mainly for protection.
- 2. <u>Mematoblast</u>- (stinging cells). It contains a thread which contains a toxic fluid. It is used in the piercing and poisoning of prey.

- 3. <u>Sensory cells</u>- They are for detecting changes in the surrounding environment and pass impulses to the regrue cells.
- 4. Serve cells- They are interconnected to form a nerve net. They are connected to the contractile muscle tail of the musculo-epithelial cell. Therefore, their role is to pass on the information ie conducting impulses to the serve muscle tails of the musculo epithelial cells.
- 5. <u>Wuscle tails</u>- They are contractile muscles at the base of each musculo-epithelial cell. They are concerned with bringing about the movement or beating of the tentacles and flagella when they contract.
- 6. **<u>Glandular cells</u>**-They secrete enzymes that carry out digestion in the enteron.
- 7. **Phagocytic musculo-epithelial cells** For taking in small particles from the enteron so that digestion is completed intracellularly.
- 8. **Eagellated musculo-epithelial cells** Are important for effective movement of materials eg food materials and stirring it up in the enteron.
- 9. **<u>B</u>terstitial cells** For generation or production of new cells.

FEEDING MECHANISM IN A HYDRA


Food of a hydra is usually water fleas. The water fleas are immobilized by the stinging cells and pulled to the mound by the tentacles under the influence of the contraction of the muscle tails which are controlled by the nerver net in the mesoglea.

When the food reaches in the enteron, digestion starts by the enzymes secreted from the glandular cells. Digestion is completed inside the musculo epithelial cells which take up food particles from the enteron by phage cytosis.

3. Collonial ORGANIZATION

In control organization, cells are functionally isolated i.e their activities are not co-ordinated. Each cell when isolated can exist on its own for example in a sponge.

Structure of a sponge

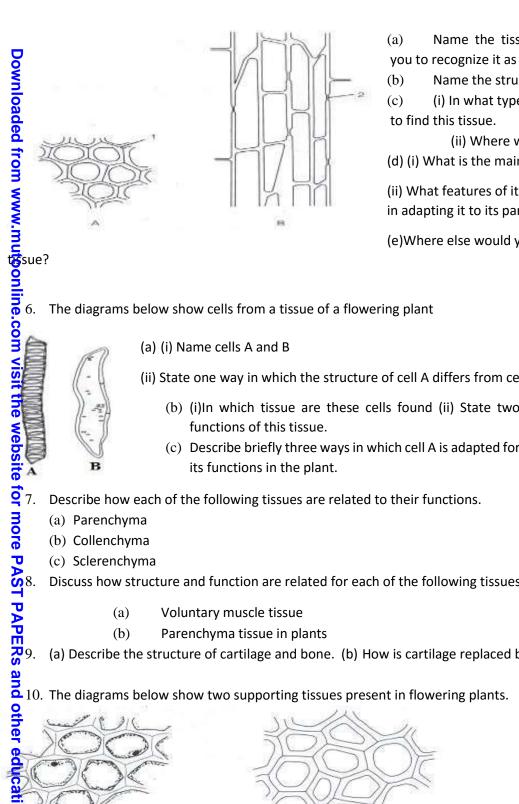
ORGAN LEVEL OF ORGANIZATION

It is a level of organization where the physiological functions are mainly performed by organs and organ systems. An example is mammals. This form of organization occurs mainly in the higher multicellular and mals.

An available of being multicellular

a) It allows increase in size.

big t brings about specialization of specific cells for a particular function, thus improving efficiency of an or anism as a whole.


 $c \neq I$ permits exploitation of environment in which single celled organisms cannot live.

d it allows development of better tissues for example muscles for quick movement, skeleton for support and quick movement.

There is also development of sophisticated physiological mechanisms e.g. maintenance of body temperature.

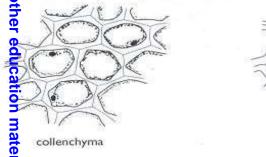
SAMPLE QUESTIONS

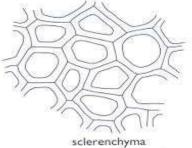
- 1. (a) For each of the following, show how its structure is related to its function:
 - i. a red blood corpuscle;
 - ii. a motor neurone;
 - a xvlem vessel. iii.
 - (b) What advantages do organisms gain from cell differentiation?
- Visit the website for more PAST PAPERs and other education materials By means of labelled diagrams only, illustrate the microscopic structure of mammalian bone and cartilage. Show how these tissues give support to the body.
 - (a) Give an illustrated account of the structure of a meristematic cell of a plant
 - (b) How do the structure and function of each of the following differ from that of a meristematic
 - cell? i. a xylem fibre
 - ii. a sieve tube
 - iii. a guard cell
 - What is the main structural difference between xylem cells and sclerenchyma? (ii) How is this difference explained by the
 - The diagram shows part of a tissue as seen in transverse (A) and longitudinal (B) section

(a) Name the tissue. What features enable you to recognize it as such?

Name the structures labelled 1 and 2

(i) In what type of stem would you expect


(ii) Where would it be situated? (d) (i) What is the main function of such a tissue?


(ii) What features of its cell walls are important in adapting it to its particular function?

(e)Where else would you expect to find such a

(ii) State one way in which the structure of cell A differs from cell B

- (b) (i)In which tissue are these cells found (ii) State two
- (c) Describe briefly three ways in which cell A is adapted for
- Discuss how structure and function are related for each of the following tissues.
- (a) Describe the structure of cartilage and bone. (b) How is cartilage replaced by bone?

Give two structural features shown in the diagram. Which are characteristic of collenchyma.

(b) (i)Give two ways in which sclerenchyma differs from collenchyma.

(ii) Collenchyma is often present in the petiole and midrib of leaves. Suggest two reasons why collenchyma is more suitable than sclerenchyma for support in these locations

(c Both tissues are shown in transverse section. Make a drawing of a sclerenchyma cell as it would appear in longitudinal section.

- 11. (a) Name two areas in plants where each of the following tissues is found
 - (i) Sclerenchyma
 - (ii) Collenchyma
- (b) Give three structure adaptations of the sclerenchyma tissues for its function.
- (c) Explain the importance of the collenchyma tissue in leaves and young stems.
- (d) Outline three structural differences between the collenchyma and sclerenchyma tissue.
- (c) Explain the importance of the collenchyma tissue in leaves and young stems.
 (d) Outline three structural differences between the collenchyma and sclerenchyma and sclerenchyma in the collenchyma and sclerenchyma and sclerenchyma in the collenchyma and sclerenchyma issue.
 (a) Collagen tissue.
 (b) Collagen tissue in adapted to its functions.
 (c) Voluntary muscle tissue.
 (b) Parenchyma tissue in plants 13. (a) Describe the structure of the vascular systems in higher plants. (b) How is the
 - 14. Discuss how structure and function are related for each of the following tissues.