

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

PHYSICS

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

- Answer five questions, including at least one, but not more than two from each of the Sections A, B and C.
- Any additional question(s) answered will not be marked.
- Non programmable silent scientific calculators may be used.

Assume where necessary:	a	=	9.81 ms ⁻²
Acceleration due to gravity	g e	=	1.6 x 10 ⁻¹⁹ C
Electron charge	e no vi	ol god	9.11 x 10 ⁻³¹ kg
Electron mass Mass of earth		<u> </u>	$5.97 \times 10^{24} kg$
Planck's constant,	h	=	$6.6 \times 10^{-34} Js$
Stefan – Boltzmann's constant,	σ	=	$5.67 \times 10^{-8} Wm^{-2} K^{-4}$
Radius of the earth		=	$6.4 \times 10^6 m$
Radius of the sun		=	$7.0 \times 10^8 m$
Radius of earth's orbit about the sun		=	$1.5 \times 10^{11} m$
Speed of light in a vacuum		=	$3.0 \times 10^8 m$
Specific heat capacity of water		=	4,200Лkg ⁻¹ К ⁻¹
Specific latent heat of fusion of ice			$3.34 \times 10^5 Jkg^{-1}$
Universal gravitational constant,	G	- -	6.67 x 10 ⁻¹¹ Nm ² kg ⁻²
	N_A	= 1	$6.02 \times 10^{23} \text{ mol}^{-1}$
Avogadro's number	lowied	00=01	$13.6 \times 10^3 \text{kgm}^{-3}$
Density of mercury	e/m		1.8 x 10 ¹¹ Ckg ⁻¹
Charge to mass ratto,	e/m		
The constant $\frac{1}{4\pi\epsilon_0}$		=	$9.0 \times 10^9 F^{-1} m$
			1000 kgm ⁻³
Density of water	R	=	8.31Jmol ⁻¹ K ⁻¹
Gas constant	10.4		2.90 x 10 ⁻³ m K
Wien's displacement constant			
Surface tension of soap solution			$2.0 \times 10^{-2} Nm^{-1}$
Electron charge to mass ratio, e/m		=	1.8 x 10 ¹¹ C kg ⁻¹
		=	2.23 X 10 ⁶ J kg ⁻¹
Specific latent heat of Vaporation			
	F F	wallen with my	40 H 1

© WAKISSHA Joint Mock Examinations 2024

Turn O

SECTION A

		DECTION					
1. ((a) (i) Define dimensions of a physical quantity?	(01 mark)				
	((ii) The equation for the pressure difference per unit length, P between the ends of a pipe of radius r for a liquid of coefficient of viscosity η , is $P = \frac{8\eta V}{\pi r^4}$ where V is the volume per unit time of the liquid flowing.					
		If the dimensions of n is ML-1T-1, show that the equation dimensionally consistent.	(03 marks)				
(1	i) (i) State Newton's Laws of motion.	(03 marks)				
	(ii	a distance 95 km to town Q and town Q to town R is 80 travelling along the highway in the direction of the town an acceleration of a ms ⁻² . The bus passes through town P with 'u' m/s and reaches hours later and R 0.8 hours after that.	km. A bus is s P, Q, R with town Q 1.2				
		Calculate the values of 'u' and 'a'.	(04 marks)				
(c)) De (i)	efine the terms as applied to projectiles: Time of flight	(01 mark)				
	(ii)	Range	(01 mark)				
(d)	(d) A helicopter is travelling horizontally at 20 ms ⁻¹ at height of 50 m above point 'P' on a horizontal ground when it releases a package. Calculate;						
	(i) (ii) (iii)	the time taken for the package to reach the ground. the distance from P where the package lands. the vertical velocity of the package as it reaches the gro	(02 marks) (02 marks) ound.				
			(03 marks)				
(a)	(i)	State the principle of conservation of linear moments	am. (01 mark)				
	(ii)	Describe the principle of rocket propulsion.	(03 marks)				
(b)	960 at on throu	allet of mass 40 g is fired from a gun and hits a block of g lying on a rough horizontal surface which is attached to e end and has a force constant 50 Nm ⁻¹ . The spring is cough a compression of 4.5 cm. If the coefficient of frictional the initial speed of the bullet.	o a spring fixed ompressed				
(c)	(i)	Explain using molecular theory the laws of solid fricti	ion. (06 marks)				
	(ii)	Describe an experiment to determine the coefficient of	of static friction. (03 marks)				
(4)	Evnla	in why a car tyre moving on a hard-rough surface on a					

may burst.

(03 marks)

3. (a)	What (i) (ii) (iii)	Young's Modulus (01 r	mark) mark) mark)
(b)	0.8 r wire	Iniform rod AB weighing 100 kg and 0.75 m long is hinged to a vertal at end A and held horizontally by a stretched thin wire of diameter mm fixed at end B and at C on the vertical wall, 1.0 m above A. If e was initially 1.23 m long, find;	the
	(i) (ii)	The tension in the wire.	marks)
(c)	(i) (ii)	State the laws of planetary motion. (03 : Describe how the universal gravitational constant can be determined to the control of the control o	marks) mined. 5 marks)
(d)	Exp on a	plain why a racing car can travel faster around a banked track than	
4. (a)	Defin (i) (ii)	surface tension	01 mark) 01 mark)
(b)	With the s	h the aid of a labelled diagram, describe an experiment to measu	ure)4 marks)
(c)	A gla	lass capillary tube of uniform bore of diameter 0.050 cm is held ically with its lower end in water. Calculate the capillary rise.	03 marks)
(d)	(i) (ii)		(01 mark) (02 marks)
(e)	A uni	niform wooden rod floats upright in water with a length of 30 cersed. If the rod is depressed slightly and then released,	
	(i) (ii)	Trove that its motion is simple harmone.	(04 marks) (02 marks)
		SECTION B	
. (a)	(i)	What is an ideal gas?	(01 mark)
94775, 25 14, 2	(ii)	Derive the expression $P = \frac{1}{3} \int c^{2}$ for the pressure P of an	1
		ideal gas of density f' and mean square speed $\overline{c^2}$, stating a assumptions made.	(06 marks)
((i)	the gas fills up the container in which it is placed. pressure of a fixed mass of a gas varies with temperature.	(02 marks) (02 marks) Turn Ove
		© WAKISSHA Joint Mock Examinations 2024	3

(c)	revers	as of air occupying initially a volume 2000 cm ³ at a pressure and and temperature of 200 $^{\circ}$ C is expanded adiabatically and sibly to twice its volume. It is then compressed isothermally a sibly to a volume of 3000 cm ³ . Find the final temperature and (8 = 1.4)	of and pressure 03 marks) (01 mark)
(d)	(i) (ii)	Define saturated vapor pressure.	THE RESERVE OF THE PARTY OF THE
		saturated vapour pressure	(01 mark)
(a)	(i) (ii) (iii)	Explain the mechanism of heat transfer in solids. Explain the mechanism of heat transfer in solids. Describe an experiment to determine the thermal conductive	(03 marks) vity (06 marks) rature
(b)	(i) (ii)	Explain why black body radiation is referred to as a tempe regulator. Draw sketch graphs to show the variation of relative intensions wave length for two different temperatures. Describe the main features of the graph in b(ii) above.	(02 marks) (02 marks)
(c)	A he has a (i) (ii)	Describe the main features of the graph eating element in form of a cylinder 60 cm long and 15 mm is an output of 2 kW. If its radiation is 80% that of a black bod its temperature. the wave length of the radiation emitted.	y. Find; (02 marks) (02 marks)
(a)	(i)	Define Kelvin State properties of a good thermometric property.	(01 mark) (02 marks)
(b)	(ii)	With reference to a thermocouple thermometer, describe	*
	(ii)	The length of the liquid column is 2.0 cm at the ice point 2.7 cm at steam point and 8.4 cm at unknown temperature Calculate the unknown temperature in Kelvin.	re. (03 marks)

- Explain why latent heat of vaporization is greater than latent heat (i) (c) (02 marks) of fusion of the same substance.
 - Describe an experiment to determine the specific latent heat of (ii) (06 marks) vaporization of a liquid by Dewar flask method.
- Steam is passed through a calorimeter of heat capacity 40 Jk-1 containing ice of mass 200 g. The mixture attains a final temperature (d) of 10 °C after some time. Calculate the total mass of the liquid in (03 marks) the calorimeter. © WAKISSHA Joint Mock Examinations 2024

SECTION C 8. (02 marks) (a) Distinguish between X-rays and cathode rays. (i) In an X-ray tube, explain the features adopted for the (03 marks) structure and material of the anode. (01 mark) (b) State Bragg's Law (i) What is the condition for obtaining many orders of X-rays diffraction. (ii) (01 mark) A monochromatic beam of X-rays of wave length 1.10 x 10⁻¹⁰ m (iii) is incident on a set of cubic atomic planes in a potassium chloride crystal. First order diffraction maxima are observed at a glancing angle of 190. Determine the density of potassium chloride if its (04 marks) relative molecular mass is 75.5. What is meant by Work function as applied to photoelectric effect? (c) (01 mark) Describe how you would determine Planck's constant in a school (ii) (04 marks) laboratory. When monochromatic light of frequency 6.0 x 1014 Hz falls (iii) on a metal surface, the stopping potential is 0.4 V while when the same surface is struck by light of frequency 1.0×10^{15} Hz, the stopping potential becomes 2.2 V. (04 marks) Determine the work function of the metal. Distinguish between radioactivity and nuclear fission? (02 marks) 9. (a) (i) (01 mark) Define binding energy of a nucleus? (ii) (01 mark) What is half-life of a radioactive substance? (i) (b) Derive the relationship between half-life and the decay (ii) (04 marks) constant of a radioactive substance. A nucleus of uranium 238 of half- life 4500 years decays with (c) emission of nucleus X and an alpha particle. Find the power developed by 2 g of uranium disintegration. Mass $^{238}U = 238.12492U$ Mass of X = 234.11650UMass of 4He = 4.00387U.

(05 marks)

Turn Over

© WAKISSHA Joint Mock Examinations 2024

IIJ = 931 meV

- (d) A beam of electrons is accelerated through a potential difference of 1800 V and is directed mid-way between two horizontal plates of 4 cm long and a separation of 4 cm. The potential difference across the plates is 90 V.
 - (i) Calculate the speed of the electrons as they enter the region between the plates.
 - (ii) Describe the motion of the electrons between the plates. (01 mark)
 - (iii) Find the rate at which the electron beam emerges out of the field a across the plates. (03 marks)
- 10. (a) (i) Define positive rays? (01 mark)
 - (ii) Describe how positive rays can be produced in a discharge tube.
 (03 marks)
 - (b) Sketch and explain the current voltage characteristic curve for the discharge tube. (05 marks)
 - (c) With the aid of a diagram, describe how a C.R.O is operated. (06 marks)
 - (d) (i) What is meant by anode resistance as applied to triodes. (01 mark)
 - (ii) A triode with mutual conductance of 5 m Ω V⁻¹, a node resistance 2 x 10⁴ Ω and load resistance 10,000 Ω is used as a single stage voltage amplifies. Calculate the voltage gain.

(04 marks)

END